• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
5 risultati
Tutti i risultati [74]
Geometria [5]
Matematica [22]
Analisi matematica [8]
Arti visive [8]
Biografie [6]
Archeologia [6]
Storia della matematica [5]
Fisica [5]
Economia [5]
Algebra [4]

convessità

Enciclopedia on line

convessità Una figura (piana o solida) è detta convessa se, dati due suoi punti qualunque, il segmento che li congiunge appartiene interamente alla figura. Più in generale questa definizione si applica [...] , in pieno sviluppo, della matematica (a partire dagli studi di H. Minkowski, C. Carathéodory, D. Hilbert ecc.). Funzioni convesse Una funzione f è convessa in un dominio convesso C (per es., un intervallo) se per ogni x, y in C si ha con 0 〈 t 〈 1 ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – GEOMETRIA – TEMI GENERALI
TAGS: SPAZIO VETTORIALE – FUNZIONI CONVESSE – CURVA CHIUSA – MATEMATICA – POLIEDRO
Mostra altri risultati Nascondi altri risultati su convessità (1)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo Jean-Paul Pier Il Bourbakismo L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] vettoriali topologici metrizzabili. Il secondo capitolo introduce innanzitutto la nozione di seminorma. Espone la convessità, descrive i coni convessi e le funzioni convesse. Si dimostra la forma analitica del teorema di Hahn-Banach. Si studia lo ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA

curva

Enciclopedia on line

Matematica Generalità Nel linguaggio matematico, sinonimo di linea, intendendosi quindi anche la retta come una particolare curva. Una definizione di c. valida in ogni caso non è possibile per il fatto [...] ovvero le equazioni parametriche x=x (t), y=y (t) che danno x, y in funzione di un parametro t (variabile in un certo intervallo), o anche, più in generale, fi la stessa soddisfazione. Le c. sono inoltre convesse verso l’origine degli assi perché, man ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – TEMI GENERALI
TAGS: EQUAZIONI PARAMETRICHE – DUPLICAZIONE DEL CUBO – COORDINATE CARTESIANE – COORDINATE OMOGENEE – ASCISSA CURVILINEA
Mostra altri risultati Nascondi altri risultati su curva (4)
Mostra Tutti

L'Età dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele Peter Schreiber Geometria analitica, delle curve e delle superfici. Il problema delle parallele A [...] il fatto che egli si limitava a superfici convesse, immaginando evidentemente che altrimenti il percorso più breve curva piana, il cui raggio di curvatura R è perciò una funzione di P e della direzione di questa curva, espressa da un angolo ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

Variazioni, calcolo delle

Enciclopedia della Scienza e della Tecnica (2007)

Variazioni, calcolo delle Gianni Dal Maso Un problema di grande importanza nella matematica pura e applicata è la ricerca dei valori massimi o minimi di grandezze dipendenti da variabili di tipo numerico [...] se n=1 oppure m=1. Una sottoclasse particolarmente interessante di funzioni quasi convesse è quella delle funzioni policonvesse, cioè delle funzioni del tipo g(η)=h(M(η)), dove h è una funzione convessa e M(η) indica il vettore le cui componenti sono ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – GEOMETRIA
TAGS: EQUAZIONE DIFFERENZIALE ALLE DERIVATE PARZIALI – EQUAZIONE DIFFERENZIALE ORDINARIA – SCUOLA NORMALE SUPERIORE DI PISA – TEORIA DELLE DISTRIBUZIONI – CALCOLO DELLE VARIAZIONI
Mostra altri risultati Nascondi altri risultati su Variazioni, calcolo delle (4)
Mostra Tutti
Vocabolario
tamburo
tamburo s. m. [dall’arabo ṭunbūr, nome di uno strumento musicale a corde, incrociato con ṭabūl «tamburo»]. – 1. a. In senso ampio, strumento musicale membranofono in cui l’elemento vibrante è costituito da una o due pelli (generalm. d’asino),...
annunciatóre
annunciatore annunciatóre (o annunziatóre) s. m. [dal lat. tardo annuntiator -oris]. – 1. (f. -trice) Chi annuncia, chi dà un annuncio: noi figli e annunziatori della promessa (Manzoni); l’angelo a. (qui in funzione appositiva; in altri casi,...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali