Numeri, teoria dei
Larry Joel Goldstein
La teoria dei numeri è il settore della matematica dedicato allo studio delle proprietà degli interi, cioè dell'insieme ℤ costituito dai numeri
…, −4, −3, −2, [...] cioè l'insieme di tutti i numeri complessi x+iy, con x,y reali e y>0. Se
[36] formula
è in Γ, γ può agire su ℍ nel modo seguente:
[37] formula.
Una forma automorfa di peso k per Γ è una funzione f(z) definita per z in ℍ tale che:
a b
a) f(γ ...
Leggi Tutto
L'Eta dei Lumi: matematica. Le equazioni differenziali
Silvia Mazzone
Clara Silvia Roero
Le equazioni differenziali
E con la nascita del calcolo infinitesimale di Newton e di Leibniz, nella seconda [...] delle soluzioni particolari sia nel caso delle radici reali (semplici o multiple) sia nel caso delle ottiene la soluzione
[64] y(x,t)=Ψ(kt +x)-Ψ(kt-x),
dove Ψ è una funzione periodica di periodo 2l tale che
[65] Ψ(x)-Ψ(-x)=f(x)
e
In questa stessa ...
Leggi Tutto
La grande scienza. Geometria numerativa e invarianti di Gromov-Witten
Enrico Arbarello
Geometria numerativa e invarianti di Gromov-Witten
Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] è altro che l'insieme degli zeri di un polinomio P(x,y) di due variabili reali x e y:
[1] C={(x,y)∈ℝ2:P(x,y)=0}.
Si dice ) è un multiindice, dxI=dxi1 ∧…∧dxik e le fI sono funzioni C∞ a valori complessi. L'operatore di differenziazione d è definito ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] convesse e i criteri di convessità.
Il secondo capitolo presenta la teoria delle primitive e degli integrali per le funzioni di una variabile reale a valori in uno spazio normato completo su ℝ. In assenza della nozione di misura, se f:I→ℝ per una ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali
Haïm Brezis
Felix Browder
Equazioni differenziali alle derivate parziali
Lo studio delle equazioni [...] per la prima volta nel 1885 da Poincaré nel quadro dell'astrofisica. La situazione tipica è quella di una famiglia di funzioni Fλ(u) dipendenti da un parametro λ, con λ reale e Fλ(0)=0 per ogni λ, e con F0(u) che ammette derivata in 0, F90(0)=L con ...
Leggi Tutto
La grande scienza. Calcolo delle variazioni
Gianni Dal Maso
Calcolo delle variazioni
Un problema di grande importanza nella matematica pura e applicata è la ricerca dei valori massimi o minimi di grandezze [...] del tipo
[2] F(u)=∫baf(x,u(x), u'(x))dx,
dove [a,b] è un intervallo della retta reale ℝ e f(x,y,η) è una funzione regolare di tre variabili reali. Dati due numeri reali α e β, si considera il problema di trovare un minimo di F(u) tra tutte le ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica
Jeremy Gray
Geometria algebrica
Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] superficie complessa da quella, più problematica, espressa in termini di teoria delle funzioni. Dimostrò così, tra l'altro, che non tutte le varietà (di dimensione reale pari) possono essere varietà algebriche complesse.
Tavola Ia e Ib
Il periodo ...
Leggi Tutto
Sistemi dinamici. Origini e sviluppo
Giovanni Jona-Lasinio
La teoria dei sistemi dinamici è un settore della matematica pura e applicata che si è sviluppato intensamente a partire dagli anni Sessanta [...] θ1, …, θn, μ)=
=H0(A1, …, An)+ μH1(A1, …, An, θ1, …, θn)+ …
dove μ è un parametro piccolo e H è una funzione analitica reale di 2n+1 variabili; H1 è periodica nelle θk. Ci chiediamo in particolare cosa accade dei moti quasi periodici descritti da H0 ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale
Jeremy Gray
Geometria differenziale
La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] (1819-1892), Gauss dimostrò che l'integrale della funzione curvatura esteso a un triangolo finito i cui lati il cerchio si può prendere come spazio base, e i numeri reali come fibra. Vi sono essenzialmente due distinti spazi totali: il cilindro ...
Leggi Tutto
Numeri
Umberto Zannier
Quanti? Quanto? Quando? A che distanza? Domande a cui rispondiamo, di solito, con numeri. Di essi facciamo continuo uso, e l’importanza concettuale, oltre che pratica, della nozione [...] che, tra l’altro, ha condotto a una simbiosi tra fisica e matematica, estremamente fruttuosa. E nel mondo reale i numeri funzionano talmente bene che ne abbiamo continui esempi. Tanto per sceglierne uno, si pensi ai successi delle missioni spaziali ...
Leggi Tutto
funzione
funzióne s. f. [dal lat. functio -onis, der. di fungi «adempiere»]. – 1. Attività svolta abitualmente o temporaneamente in vista di un determinato fine, per lo più considerata nel complesso di un sistema sociale, burocratico, ecc....
reale2
reale2 agg. [dal lat. mediev. realis, der. di res «cosa»]. – 1. Che è, che esiste veramente, effettivamente e concretamente (contrapp., nell’uso com. e generico, a immaginario, illusorio e anche a apparente, ideale, possibile): le mie...