Ciascuno degli enti astratti che costituiscono una successione ordinata e che, fatti corrispondere ciascuno a ciascun oggetto preso in considerazione, servono a indicare la quantità degli oggetti costituenti [...] zeta di Riemann definita appunto, per Re[s]>1, da ζ(s)= ∑∞n=1n−s. La funzione ζ(s) può essere prolungata analiticamente fino a ottenere una funzione, detta ancora ζ(s), olomorfa in tutto il piano complesso escluso il punto s = 1. Quest’ultima ...
Leggi Tutto
numeri di Renard elementi di una scala numerica utilizzata come standard ISO3 per diverse applicazioni. Sono il risultato di adattamenti algoritmici nella generazione degli elementi della successione di → Renard, matematicamente definibile. ...
Leggi Tutto
Per numeri (ἀριϑμόι) i Greci intendono esclusivamente i n. naturali (interi positivi), ossia i n. che rispondono alla domanda: «quanti?». Per i pitagorici i n. non possiedono un’esistenza fuori del mondo fisico, ma sono realtà immanenti e causa delle cose, richiamando il fatto che contare è un’attività ... ...
Leggi Tutto
Numero
Walter Maraschini
Quantità che accompagnano da sempre la vita e la storia dell’uomo
Ci sono numeri ovunque: il numero delle pagine di questo libro, il recapito telefonico, il numero di targa, il numero d’ordine sul registro di classe. I numeri servono per fare la conta o giocare a nascondino, ... ...
Leggi Tutto
H. Lange
Si considera n. ognuno degli enti astratti che costituiscono una successione ordinata e che, fatti corrispondere ciascuno a ogni oggetto preso in considerazione, servono a indicare la quantità degli oggetti costituenti un insieme.I neopitagorici distinguevano fra tre tipi di n.: matematici, ... ...
Leggi Tutto
nùmero [Der. del lat. numerus] [LSF] Oltre che nei vari signif. propri della matematica, alcuni dei quali sono ricordati oltre, il termine è usato in varie discipline fisiche anche come sinon. di costante (per es., n. di Avogadro per costante di Avogadro) e, non propr., come sinon. di grandezza fisica ... ...
Leggi Tutto
(lat. numerus; gr. άειϑμος)
Federigo ENRIQUES
Giacomo DEVOTO
Riccardo BACHI
Nicola Turchi
Matematica. - Nell'uso comune i numeri vengono adoperati:1. per indicare il posto occupato da un oggetto in una serie ordinata (esempio: il soldato, che nella fila occupa il posto numero 3; il giorno 7 del ... ...
Leggi Tutto
Biologia
In genetica, tratto di DNA che fa parte di un operone e condiziona la trascrizione dei geni strutturali immediatamente adiacenti (➔ operone).
Filosofia
In filosofia analitica, un’espressione [...] analitica d’o. in modo coerente con le operazioni dell’algebra Ω. Sia f(z) una funzione complessa della variabile complessa z, olomorfa localmente in un campo G del piano di Gauss; dato ω ∈ Ω, con S(ω) ⊂ G si pone
,
dove T è un dominio contenuto ...
Leggi Tutto
Filosofia
Nella logica kantiana, giudizio a. è quello nel quale il concetto del predicato è implicitamente contenuto nel concetto del soggetto, e in cui quindi basta analizzare il soggetto per ricavarne [...] di Taylor:
Le trascendenti elementari (ex, log x, sen x ecc.) sono funzioni analitiche. Una funzione complessa
della variabile complessa z=x+i y si dice a. (o monogena o olomorfa) in un certo dominio A del piano complesso, se è derivabile in ogni ...
Leggi Tutto
singolare
singolare [agg. Der. del lat. singularis "proprio di uno solo"] [LSF] Di ente che si comporta in modo diverso dal normale, che presenta eccezioni rispetto a qualche proprietà, in contrapp. [...] II 75 e; (b) di una funzione, punto in cui la funzione non è olomorfa; (c) di una trasformazione, punto in superfici: II 75 f, 79 b. ◆ [ALG] [ANM] Punto s. essenziale: v. funzioni di variabile complessa: II 778 d. ◆ [ALG] [ANM] Punto s. stabile: v. ...
Leggi Tutto
olomorfo
olomòrfo agg. [comp. di olo- e -morfo]. – In matematica, sinon. di analitico, usato quando si considerino funzioni di una o più variabili complesse.
sinettico
sinèttico agg. [dal gr. συνεκτικός «che comprende, che contiene»]. – In matematica, funzione s., nome, ormai caduto in disuso, dato da taluni autori alle funzioni olomorfe (v. funzione, n. 5 b).