La grande scienza. Cronologia scientifica: 1961-1970
1961-1970
1961
Famiglia universale. Il giapponese Masatake Kuranishi mostra che esiste sempre un certo tipo di famiglia olomorfa di strutture complesse [...] .
Una camera a bolle gigante. è quella dell'Argonne Laboratory dell'Atomic Energy Commission, Illinois; dotata di quattro macchine fotografiche, entra in funzione il 13 ottobre e, con un diametro di 3,66 m, un'altezza di 2,13 m e un volume di 24.000 ...
Leggi Tutto
Numeri, teoria dei
LLarry Joel Goldstein
di Larry Joel Goldstein
SOMMARIO: 1. Introduzione: a) argomenti fondamentali; b) la teoria dei numeri nel XVII e XVIII secolo; c) Gauss. □ 2. Teoria algebrica [...] su ???OUT-H??? nel modo seguente:
Una ‛forma automorfa di peso k per Γ' è una funzione f(z) definita per z in ???OUT-H???, tale che:
b) f(z) è olomorfa in ???OUT-H???;
c) f(z) ha uno sviluppo di Fourier del tipo:
Le forme automorfe compaiono ...
Leggi Tutto
L'Ottocento: matematica. Analisi complessa
Jeremy Gray
Analisi complessa
Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] ellittici, furono chiamate da Riemann 'integrali del primo tipo' e si ottengono integrando espressioni ovunque olomorfe. Si devono considerare poi funzioni con un polo di ordine superiore in un singolo punto, denominate da Riemann 'integrali del ...
Leggi Tutto
La grande scienza. Geometria non commutativa
Alain Connes
Geometria non commutativa
Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] spettro è reale e si può agire su di essa con una qualunque funzione misurabile. In generale si può agire su una variabile complessa solo con funzioniolomorfe, e ciò è esattamente quanto accade per operatori non autoaggiunti. In questo dizionario ...
Leggi Tutto
Numeri, teoria dei
Larry Joel Goldstein
La teoria dei numeri è il settore della matematica dedicato allo studio delle proprietà degli interi, cioè dell'insieme ℤ costituito dai numeri
…, −4, −3, −2, [...] cz+d)−k=f(z), γ=()
c d
b) f(z) è olomorfa in ℍ;
c) f(z) ha uno sviluppo di Fourier del tipo
[38] formula.
Le forme automorfe compaiono in modo naturale nella teoria delle funzioni ellittiche.
Un importante esempio (di peso 12 per Γ) è dato dalla ...
Leggi Tutto
Geometria differenziale
SShoshichi Kobayashi
di Shoshichi Kobayashi
Geometria differenziale
sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] una varietà (reale) lo spazio euclideo reale Rn con lo spazio euclideo complesso Cn e le funzioni differenziabili con le funzioniolomorfe (cioè analitiche complesse), si arriva alla definizione di ‛varietà complessa'. Così una varietà complessa M è ...
Leggi Tutto
Matematica: problemi aperti
Claudio Procesi
Prima di parlare dei problemi aperti nella matematica è bene riflettere su quelli che ne hanno segnato la storia passata. Sono infatti proprio questi che [...] ζ(s) si trovano sulla striscia critica 0≤Re(s)≤1 e coincidono con quelli della funzione ξ(s), olomorfa in tutto il piano. Inoltre, il numero di quelli compresi fra 0 e T è dell'ordine di (T/2π) log(T/2π)−T/2π. Fatto il cambiamento di variabili ...
Leggi Tutto
OPERATORI
Fernando BERTOLINI
. 1. Generalità. - Il termine o. indica d'ordinario il simbolo d'una operazione, o più in generale d'una applicazione univoca (v. applicazione, in questa App.); per una [...] A un intervallo dell'asse reale, B l'asse reale, Φ l'insieme delle funzioni reali definite in A; per f,g ε Φ, f + g indica l' dell'algebra Ω. Sia f(z) una funzione complessa della variabile complessa z, olomorfa localmente in un campo G del piano di ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1941-1950
1941-1950
1941
Le successioni esatte. Introdotte in una nota sui gruppi di coomologia (priva di dimostrazioni) dal polacco Witold Hurewicz ed estensivamente [...] di Leray.
Coerenza dei fasci strutturali. Il giapponese Kiyoshi Oka dimostra che il fascio dei germi delle funzioniolomorfe sullo spazio complesso n-dimensionale è coerente, da ciò discende la coerenza dei fasci strutturali degli spazi complessi ...
Leggi Tutto
ASCOLI, Guido
Nicola Virgopia
Nato a Livorno il 12 dic. 1887, studiò a Pisa e ivi si laureò a soli 20 anni (1907) svolgendo con L. Bianchi una tesi di laurea sulle singolarità delle funzioni analitiche. [...] , Picone sull'argomento, facendo uso del lemma: "Se in un insieme A le funzioni U e V sono armoniche, e V ha segno costante, U/V non ha dell'equazione
x + x = f (x, 1 /t), dove f (x, u) è olomorfa per x = u = o e nulla sia per x = o, sia per u = o ...
Leggi Tutto
olomorfo
olomòrfo agg. [comp. di olo- e -morfo]. – In matematica, sinon. di analitico, usato quando si considerino funzioni di una o più variabili complesse.
sinettico
sinèttico agg. [dal gr. συνεκτικός «che comprende, che contiene»]. – In matematica, funzione s., nome, ormai caduto in disuso, dato da taluni autori alle funzioni olomorfe (v. funzione, n. 5 b).