• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
agenda
atlante
il chiasmo
Le parole valgono
lingua italiana
webtv
950 risultati
Tutti i risultati [23325]
Biografie [4009]
Diritto [2519]
Storia [2199]
Arti visive [1870]
Medicina [1320]
Fisica [1155]
Temi generali [1172]
Religioni [1105]
Archeologia [1169]
Biologia [944]

lorentziano

Dizionario delle Scienze Fisiche (1996)

lorentziano lorentziano [agg. Der. del cognome di H.A. Lorentz] [PRB] Distribuzione l. (o, assolut., lorentziana s.f.): quella rappresentata dalla funzione l. (v. oltre). ◆ [ANM] Funzione l. (o, assolut., [...] a metà intensità (v. fig.) di una sorgente di radiazione che perciò è detta sorgente lorentziana. ◆ 2[OTT] Riga l.: riga spettroscopica la cui forma è rappresentata dalla funzione l. (v. sopra): v. righe spettrali, larghezza e forma delle: V 16 d. ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – OTTICA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA

liscio

Dizionario delle Scienze Fisiche (1996)

liscio lìscio [agg. (pl.f. -sce) Probab. der. del germ. lisi "lieve, piano"] [LSF] Di corpo che ha la superficie piana, uguale, uniforme, priva di asperità, di solchi, increspature e simili. ◆ [ALG] [...] , che varia con continuità al variare del punto sulla curva; intuitivamente, è una linea ininterrotta priva di punti angolosi. ◆ [ANM] Funzione l.: funzione reale di una variabile reale, continua insieme con la sua derivata prima. ◆ [MCC] Vincolo ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA

lacunoso

Dizionario delle Scienze Fisiche (1996)

lacunoso lacunóso [agg. Der. del lat. lacunosus, da lacuna "lacuna", "che ha lacune"] [ANM] Funzione l.: v. funzioni di variabile complessa: II 778 b. ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA

Lagrange, Giuseppe Luigi

Enciclopedia on line

Lagrange, Giuseppe Luigi {{{1}}} Matematico italiano (Torino 1736 - Parigi 1813), di famiglia d'origine francese. Indirizzato dal padre verso gli studî legali, si iscrisse a quattordici anni all'univ. di Torino, iniziando anche [...] le sue Leçons sur le calcul des fonctions (1806). Una delle "lezioni elementari" contiene il teorema di L. sull'interpolazione delle funzioni. La Théorie des fonctions rappresenta il massimo tentativo fino ad allora compiuto di porre su nuove basi il ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – EQUAZIONE DIFFERENZIALE LINEARE – COMITATO DI SALUTE PUBBLICA – CALCOLO DELLE PROBABILITÀ – PRINCIPÎ DELLA DINAMICA
Mostra altri risultati Nascondi altri risultati su Lagrange, Giuseppe Luigi (5)
Mostra Tutti

luminosita

Dizionario delle Scienze Fisiche (1996)

luminosita luminosità [Der. di luminoso "qualità, caratteristica, aspetto di ciò che è luminoso"] [BFS] [FME] Nel fenomeno della visione, lo stesso che coefficiente di visibilità e fattore di visibilità [...] accumulazione: v. elettrodinamica quantistica, verifiche sperimentali della: II 324 f. ◆ [ASF] L. solare: v. Sole: V 323 b. ◆ [ASF] Funzione di l., funzione generale di l., funzione iniziale di l.: v. astronomia galattica: I 222 e, 223 a, c. ◆ [OTT ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – BIOFISICA – FISICA MATEMATICA – FISICA NUCLEARE – FISICA TECNICA – METROLOGIA – OTTICA – TEMI GENERALI – STATISTICA E CALCOLO DELLE PROBABILITA – ELETTRONICA
Mostra altri risultati Nascondi altri risultati su luminosita (2)
Mostra Tutti

L'Ottocento: matematica. Analisi complessa

Storia della Scienza (2003)

L'Ottocento: matematica. Analisi complessa Jeremy Gray Analisi complessa Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] che egli descriveva come un "dominio connesso chiuso in sé stesso". Dal momento che gli ingredienti sono essi stessi funzioni, l'affermazione risulta audace, ma non si tratta di un uso ingenuo del principio euristico di Dirichlet. Purtroppo, come ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea

Storia della Scienza (2003)

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea Jeremy Gray Dalla geometria proiettiva alla geometria euclidea La geometria proiettiva La carriera del matematico francese [...] localmente specificando i loro poli semplici, cioè un arbitrario insieme di m punti nei quali la funzione ha l'andamento di 1/z. Tali funzioni, tuttavia, possono non essere a un solo valore. Riemann riuscì comunque a mostrare che una superficie ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2003)

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali Thomas Archibald Equazioni differenziali alle derivate parziali Nel corso del XIX sec. la teoria delle funzioni di più variabili [...] della definizione data da Cauchy; lacune evidenziate da Eduard Heine nel 1870. Nello stesso anno Karl Johannes Thomae fornì l'esempio della funzione (presumibilmente posta uguale a 0 nell'origine), che non è certo continua in (0,0) sebbene lo sia ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. Le equazioni differenziali

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Le equazioni differenziali Silvia Mazzone Clara Silvia Roero Le equazioni differenziali E con la nascita del calcolo infinitesimale di Newton e di Leibniz, nella seconda [...] separazione delle variabili; d'Alembert osserva infatti che la soluzione y(x,t) può essere scritta come prodotto di due funzioni, l'una della variabile x e l'altra della variabile t [67] y(x,t)=S(x)T(t) In una successiva memoria, edita nel 1752, egli ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. I metodi numerici

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. I metodi numerici Peter Schreiber I metodi numerici Il XVII sec. è stato in generale un 'secolo geometrico'. A parte alcune considerazioni di carattere puramente numerico, [...] e Johann I Bernoulli avevano stabilito, con il metodo della decomposizione in frazioni parziali, la formula per l'integrale delle funzioni razionali. L'integrazione termine a termine di una serie di potenze, che veniva effettuata in modo non rigoroso ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA
1 2 3 4 5 6 7 8 ... 95
Vocabolario
funzióne
funzione funzióne s. f. [dal lat. functio -onis, der. di fungi «adempiere»]. – 1. Attività svolta abitualmente o temporaneamente in vista di un determinato fine, per lo più considerata nel complesso di un sistema sociale, burocratico, ecc....
agenzia per l'impresa
agenzia per l'impresa agenzia per l’impresa (agenzia per le imprese), loc. s.le f. Istituzione che ha il compito di fornire assistenza e consulenza alle imprese di produzione e scambio di beni e servizi. ◆ [tit.] Consulenza per tutti / Via...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali