La seconda rivoluzione scientifica: matematica e logica. Teoria dei sistemi e controllo
Mark Aizerman
Teoria dei sistemi e controllo
La teoria del controllo si è formata, come campo di ricerca indipendente, [...] sulle coordinate di fase). Come funzionale che raggiunge il massimo o minimo valore sulla curva estremale si usa l'integrale rispetto al tempo di funzioni del tipo F[x(t),f(t)]. All'inizio problemi come questi furono enunciati non nei casi generali ...
Leggi Tutto
L'Ottocento: matematica. Equazioni differenziali ordinarie
Jeremy Gray
Equazioni differenziali ordinarie
Variabili reali
Durante il XVIII sec. i matematici avevano risolto un numero crescente di equazioni [...] almeno a partire dal 1800, Gauss aveva collegato la e.i.g. con lo studio dei periodi di un integrale ellittico considerato come funzione di un parametro, osservando che i periodi soddisfano l'equazione di Legendre (essa stessa un caso speciale della ...
Leggi Tutto
Complessità
Antonio Lepschy
Il termine complessità è oggi parte integrante del linguaggio scientifico, in contesti diversi. In quello dell'informatica, dell'analisi numerica e dell'ottimizzazione esso [...] di accumulazione nei quali l'uscita è costituita dall'integrale dell'ingresso. In questo senso si può dire la matrice jacobiana della f(x) calcolata per x=x‸ e svolge una funzione analoga a quella della matrice A in [2]. Non tutte le informazioni sul ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento
Jeremy Gray
Problemi di analisi complessa alla fine dell'Ottocento
La teoria generale [...] delle applicazioni conformi quanto nella cartografia teorica.
Divenne chiaro con la teoria delle funzioni ellittiche che tali funzioni, e gli integrali ellittici associati, erano necessariamente complesse. Questo non diminuì la loro utilità, e non ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali ordinarie
Jean Mawhin
Equazioni differenziali ordinarie
Accanto a sostanziali progressi nella teoria delle equazioni [...] :
[23] x"+asenx=bsent, x(0)=x(π)=0,
scritto sotto la forma equivalente di equazione integrale:
[24] x(t)=∫π0G(t,s)[-asenx(s)+bsens]ds,
mediante la funzione di Green G(t,s) del problema lineare associato, Georg Hamel (1877-1974) dimostra nel 1922 ...
Leggi Tutto
Wavelets
IIgnazio D'Antone
di Ignazio D'Antone
SOMMARIO: 1. Introduzione. ▭ 2. La trasformata wavelet continua. ▭ 3. La trasformata wavelet discreta. ▭ 4. Analisi a multirisoluzione. ▭ 5. Proprietà [...] dalla quale segue che la wavelet ψ(t) deve essere una funzione oscillante con media zero, cioè
e con trasformata di Fourier ψ᾿( di momenti nulli. Si definisce momento di ordine p della wavelet l'integrale
Se la wavelet ψ(t) ha n momenti nulli, cioè Mp ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Calcolo delle variazioni
Craig Fraser
Mario Miranda
Calcolo delle variazioni
Tra il 1870 e il 1920 si assiste al consolidamento degli argomenti [...] ogni x∈ℝn e per ogni λ=(λ1,...λν)∈ℝn−{0}.
Per ogni aperto limitato Ω di ℝn e per ogni funzione lipschitziana u, si può calcolare l'integrale
e considerare il problema di minimizzarne il valore sotto la condizione u=φ su ∂Ω, dove φ è un'assegnata ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero: Scienze (2013)
Leonardo da Vinci
Domenico Laurenza
Leonardo da Vinci si formò come artista, ma nel corso della sua carriera tese a diventare uno scienziato. Il suo studio delle leggi e delle forme naturali, oltre [...] non va oltre lo studio di muscoli e ossa in funzione di una corretta rappresentazione del corpo umano in arte. Leonardo del Settecento, questi manoscritti sono poi stati editi in forma integrale e critica più volte.
Quasi tutti si possono trovare oggi ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La topologia degli insiemi di punti
Roger Cooke
Brian Griffith
La topologia degli insiemi di punti
La topologia generale o topologia degli insiemi [...] francesi, i quali li utilizzarono per approfondire le proprietà dei numeri reali e nello studio dei concetti di derivata, integrale e funzioni di variabile reale o complessa. La topologia, con i concetti di punto di accumulazione e di insieme aperto ...
Leggi Tutto
potenziale
potenziale [agg. e s.m. Der. del lat. potentialis, da potentia "potenza"] [LSF] (a) In contrapp. ad attuale, di ciò che ha la capacità di esplicarsi in qualcosa, ma non attuandosi ancora. [...] al primo nei campi newtoniani e dal primo al secondo punto nei campi coulombiani, per cui la funzione p. ha per definizione, in un dato punto, l'integrale di linea del vettore del campo dal punto di riferimento A al punto P nei campi newtoniani e ...
Leggi Tutto
integrale
agg. e s. m. [dal lat. tardo integralis, der. di intĕger «integro, intero»]. – 1. agg., non com. Di elemento che fa parte di un tutto, che concorre alla costituzione di un intero (sinon. quindi di integrante): i corpi i. del mondo...
filo-integralista
agg. Che sostiene le posizioni più radicali e intolleranti. ◆ Giancesare Flesca [...] assistendo da un terrazzo alla scena atroce di un cecchino che sparava su dei bambini si beccò una fucilata dalla polizia. Non che questo...