lineare
lineare [agg. Der. del lat. linearis, da linea] [LSF] Inerente a una linea, in partic : (a) che è costituito o è schematizzabile da una linea (per lo più retta) o che si sviluppa prevalentemente [...] sia minore di m. ◆ [ANM] Integrale l.: lo stesso che integrale curvilineo. ◆ [ALG] [FAF] [INF [f(x)+g(x)]=Af(x)+Ag(x). La derivazione e l'integrazione di una funzione costituiscono due esempi di operatori l.; non è così, per es., per l'operatore ...
Leggi Tutto
Helmholtz Hermann Ludwig Ferdinand von
Helmholtz 〈hèlmolz〉 Hermann Ludwig Ferdinand von [STF] (Potsdam 1821 - Berlino 1894) Prof. di fisiologia nell'univ. di Königsberg (1849) e di anatomia e fisiologia [...] al contorno, la distribuzione che soddisfa le equazioni del moto è quella per la quale l'integrale esteso a tutto il volume della funzione di dissipazione (prodotto scalare del gradiente di velocità per sé stesso) ha il valore minimo. ◆ [OTT ...
Leggi Tutto
Legendre Adrien-Marie
Legendre 〈lëgŠàndr〉 Adrien-Marie [STF] (Tolosa 1752 - Parigi 1833) Prof. di matematica nell'École militaire di Parigi (1775); passò a dirigere, nel Bureau des longitudes (1787), [...] in esse si ponga ϑ=š/2, le espressioni ottenute si chiamano integrali ellittici completi di L.; questi ultimi sono importanti in quanto ogni integrale del tipo ∫R(x)P1/2dx, con R funzione razionale e P polinomio in x di terzo o quarto grado privo di ...
Leggi Tutto
equazione di Boltzmann
Anna Vulpiani
Descrive l’evoluzione temporale della densità di probabilità P(r,v,t) di trovare una molecola nella posizione r con velocità v al tempo t, in un sistema di N molecole [...] dovuta all’urto tra v1 e v2. Il pedice + nel primo integrale rappresenta la restrizione v12∙σˆ〈0 necessaria perché avvenga l’urto. L v,t) evolve obbedendo all’equazione di Boltzmann, è una funzione non crescente
[5]
ove il segno di uguale vale solo ...
Leggi Tutto
Equazione di Gelfand-Levitan-Marcenko (GLM)
Francesco Calogero
Equazione centrale nella risoluzione del problema inverso della diffusione nell’ambito della meccanica quantistica non relativistica, ossia [...] 5]
e l’equazione GLM si scrive allora come segue:
[6]
Questa equazione integrale di Fredholm – nella quale la funzione M(x) entra sia come termine noto che come nucleo – determina univocamente la funzione K(x,y) e questa determina a sua volta la ...
Leggi Tutto
curva
curva [s.f. dall'agg. curvo] [LSF] (a) Nell'uso comune, linea che non sia una retta. (b) In un uso più specifico, sinon. completo di linea, cioè includente anche le rette (ma per una definizione [...] rappresentazione diagrammatica dell'andamento di una grandezza in funzione di altre da cui dipende, sinon. quindi di equazione y=f(x) in x₀; viceversa, la curva data si dice c. integrale della c. derivata: v. meccanica analitica: III 656 f. ◆ [ALG] C ...
Leggi Tutto
Dirichlet Peter Gustav Lejeune
Dirichlet 〈diriklé〉 Peter Gustav Lejeune [STF] (Düren, presso Aquisgrana, 1805 - Gottinga 1859) Prof. di matematica nell'univ. di Berlino, succedette a Gauss nell'univ. [...] f(x)=0 per x irrazionale, f(x)=1 per x razionale, che è discontinua ovunque. ◆ [ANM] Integrale di D.: di una funzione f(x) l'espressione (2π)-1∫x+πx-π f(ξ){ sin[(n+1/2)(ξ-x)]/sin[(1/2)(ξ-x)]}dx; rappresenta la somma parziale Sn(x) di una serie ...
Leggi Tutto
Riemann Bernhard
Riemann 〈rìiman〉 Bernhard [STF] (Breselenz 1826 - Intra 1866) Prof. di matematica nell'univ. di Gottinga (1857). ◆ [ALG] Formula di R.-Hurwitz: v. Riemann, superfici di: V 4 b. ◆ [ALG] [...] di R.: v. Riemann, superfici di: V 6 b. ◆ [ANM] Funzione zeta di R.: v. funzioni di variabile complessa: II 781 d. ◆ [ANM] Integrabilità secondo R.-Stieltjes: v. misura e integrazione: IV 4 a. ◆ [ANM] Integrale di R.: v. misura e integrazione: IV 3 f ...
Leggi Tutto
Lagrange Giuseppe Luigi
Lagrange 〈lagràngë〉 (it. Lagràngia) Giuseppe Luigi (in fr. Joseph-Louis) [STF] (Torino 1736 - Parigi 1813) Prof. di matematica nella Scuola di artiglieria a Torino (1755), poi, [...] forma delle linee di velocità del fluido. ◆ [MCC] Funzione di L.: lo stesso che lagrangiana. ◆ [ANM] coniugati P e P' è nyα=n'y'α' (v. fig.). ◆ [OTT] Invariante integrale di L.: v. ottica geometrica: IV 384 f. ◆ [MCC] Inversione del teorema di L ...
Leggi Tutto
Dirac Paul Adrien Maurice
Dirac 〈dirèk〉 Paul Adrien Maurice [STF] (Bristol 1902 - m. in Florida 1984) Prof. di matematica nell'univ. di Cambridge (1932); ebbe il premio Nobel per la fisica nel 1933 per [...] quantistica: II 298 d. ◆ [ANM] Delta di D.: lo stesso che funzione delta di D. (v. oltre). ◆ [EMG] Equazione di D.: v. (v. sopra). ◆ [MCQ] Propagatore libero del campo di D.: v. integrale sui cammini: III 232 b. ◆ [FSN] Relazione di D.: v. monopolo ...
Leggi Tutto
integrale
agg. e s. m. [dal lat. tardo integralis, der. di intĕger «integro, intero»]. – 1. agg., non com. Di elemento che fa parte di un tutto, che concorre alla costituzione di un intero (sinon. quindi di integrante): i corpi i. del mondo...
filo-integralista
agg. Che sostiene le posizioni più radicali e intolleranti. ◆ Giancesare Flesca [...] assistendo da un terrazzo alla scena atroce di un cecchino che sparava su dei bambini si beccò una fucilata dalla polizia. Non che questo...