La seconda rivoluzione scientifica: matematica e logica. La teoria degli insiemi
Gabriele Lolli
La teoria degli insiemi
La teoria degli insiemi è universalmente considerata, nella sua concezione e impostazione [...] sua variabile.
L'assioma di separazione afferma che, se una funzione proposizionale è definita per tutti gli elementi di un insieme M, teoria è refutabile l'assioma di scelta, mentre è derivabile l'assioma dell'infinito. Ancora non è stato possibile ...
Leggi Tutto
FAVERO, Giovanni Battista
Enzo Pozzato
Nacque a Crespano Veneto (ora Crespano del Grappa, in prov. di Treviso) il 27 giugno 1832, da Pietro e da Candida Gianese. Le ristrettezze economiche lo costrinsero [...] partialium natura disquisitiones quaedam analyticae (Roma 1880), in cui, assegnata un'equazione con una funzione incognita con m variabili indipendenti e derivabile, fino ad un certo ordine, rispetto a tali variabili, si considerano le soluzioni dell ...
Leggi Tutto
armonico
armònico [agg. (pl.m. -ci) e s.m. Der. del gr. harmonikós, da harmózo "accordare"] [LSF] Termine inizialmente proprio dell'arte musicale, dall'accez. relativa alle corde di alcuni strumenti [...] +δd essendo d e δ, rispettiv., simb. della derivazione esterna e della coderivazione esterna di una forma differenziale; le forme a. costituiscono una generalizzazione molto ampia delle funzioni a., in quanto sono definibili non soltanto, come quelle ...
Leggi Tutto
minimo
mìnimo [agg. e s.m. Der. del lat. minimus "il più piccolo", superlativo di parvus "piccolo"] [LSF] (a) agg. Oltre che come superlativo di piccolo, si usa spesso in contrapp. a massimo. (b) Sostantivato, [...] perché un punto sia un punto di m. relativo che ivi la derivata prima sia nulla e che la derivata seconda sia positiva. Le precedenti definizioni si estendono direttamente a funzioni di più variabili. ◆ [ALG] M. di un insieme numerico: l'estremo ...
Leggi Tutto
congettura di Birch e Swinnerton-Dyer
Massimo Bertolini
È considerata una delle questioni fondamentali della matematica contemporanea. La congettura in questione stabilisce una relazione tra le proprietà [...] è effettuato su tutti i primi p che non dividono ΔΕ . Si dimostra che questo prodotto infinito converge a una funzione analitica (cioè derivabile in senso complesso) sul semipiano dei numeri complessi la cui parte reale è maggiore di 3/2. Inoltre, il ...
Leggi Tutto
esponenziale
esponenziale [agg. e s.m. Der. di esponente] [ANM] E. complesso: la funzione e. con argomento complesso, definibile a partire dalla serie e. (v. oltre); è legato alle funzioni seno e coseno [...] quale, per es., expx expy=exp(x+y), expx/expy=exp(x-y). Per quanto riguarda le proprietà differenziali, si tratta di una funzione infinitamente derivabile e le sue derivate sono ancora e.; precis., per l'e. di una sola variabile x, è (d/dx) expx=expx ...
Leggi Tutto
metodo di concentrazione-compattezza
Daniele Cassani
La soluzione di un problema variazionale è legata alla possibilità di trovare punti critici di un dato funzionale. Consideriamo il caso elementare [...] di una funzione f:(a,b)→ℝ derivabile con continuità e sia xν∈[a′,b′]⊂(a,b) tale che f(xν)→l e f′(xν)→0 per n→∞; l∈ℝ è detto livello critico. Essendo l’intervallo [a′,b′] chiuso e limitato, esiste x0∈[a′,b′] tale che xμ→x0, prendendo un’opportuna ‘ ...
Leggi Tutto
multiplo
mùltiplo [agg. e s.m. Der. del lat. multiplus, da multus "molto"] [LSF] Non semplice, costituito da più enti semplici. ◆ [MTR] Unità di misura di una grandezza pari a un certo numero di volte [...] punto) si annullano; anche, punto singolare. ◆ [ALG] Radice m.: di ordine n, di un'equazione f(x)=0, ove f(x) è una funzione continua e derivabile, una radice a dell'equazione tale che quest'ultima è divisibile per (x-a)n ma non per (x-a)n+1; essa è ...
Leggi Tutto
rappresentabile
rappresentàbile [Der. di rappresentare (→ rappresentazione) "che è suscettibile di rappresentazione"] [ALG] [FAF] Funzione r.: nella logica matematica, è tale una funzione di una o più [...] S se e solo se c'è in S una formula P(x₁,..., xn+1), tale che per ogni sostituzione di valori numerici k₁,..., kn+1 rispettiv. alle variabili x₁,..., xn+1, la formula P(k₁,..., kn+1) è derivabile in S se kn+1= f(k₁,..., kn), e, se altrimenti, è ...
Leggi Tutto
monogeneita
monogeneità [Der. di monogeno] [ANM] Condizioni di m.: lo stesso che condizioni di olomorfia di Cauchy-Riemann, che devono essere soddisfatte affinché una funzione sia analitica: la funzione [...] complessa f(z)=u(x, y)+iv(x, y) della variabile complessa z=x+iy è monogena od olomorfa o analitica in un dominio A se è derivabile in ogni punto di A; ciò si verifica se e solo se sono soddisfatte le condizioni di m. e cioè ðu/ðx=ðv/ðy e ðu/ðy=-ðv/ð ...
Leggi Tutto
derivabile
derivàbile agg. [dal lat. tardo derivabĭlis]. – Che si può derivare (nelle varie accezioni di derivare1). In matematica, funzione d., funzione che ammette derivata.
funzione
funzióne s. f. [dal lat. functio -onis, der. di fungi «adempiere»]. – 1. Attività svolta abitualmente o temporaneamente in vista di un determinato fine, per lo più considerata nel complesso di un sistema sociale, burocratico, ecc....