• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
41 risultati
Tutti i risultati [162]
Matematica [41]
Analisi matematica [24]
Fisica [18]
Temi generali [13]
Algebra [11]
Fisica matematica [10]
Statistica e calcolo delle probabilita [8]
Economia [8]
Lingua [8]
Medicina [6]

La seconda rivoluzione scientifica: matematica e logica. La teoria degli insiemi

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La teoria degli insiemi Gabriele Lolli La teoria degli insiemi La teoria degli insiemi è universalmente considerata, nella sua concezione e impostazione [...] sua variabile. L'assioma di separazione afferma che, se una funzione proposizionale è definita per tutti gli elementi di un insieme M, teoria è refutabile l'assioma di scelta, mentre è derivabile l'assioma dell'infinito. Ancora non è stato possibile ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

FAVERO, Giovanni Battista

Dizionario Biografico degli Italiani (1995)

FAVERO, Giovanni Battista Enzo Pozzato Nacque a Crespano Veneto (ora Crespano del Grappa, in prov. di Treviso) il 27 giugno 1832, da Pietro e da Candida Gianese. Le ristrettezze economiche lo costrinsero [...] partialium natura disquisitiones quaedam analyticae (Roma 1880), in cui, assegnata un'equazione con una funzione incognita con m variabili indipendenti e derivabile, fino ad un certo ordine, rispetto a tali variabili, si considerano le soluzioni dell ... Leggi Tutto
CATEGORIA: BIOGRAFIE

armònico

Dizionario delle Scienze Fisiche (1996)

armonico armònico [agg. (pl.m. -ci) e s.m. Der. del gr. harmonikós, da harmózo "accordare"] [LSF] Termine inizialmente proprio dell'arte musicale, dall'accez. relativa alle corde di alcuni strumenti [...] +δd essendo d e δ, rispettiv., simb. della derivazione esterna e della coderivazione esterna di una forma differenziale; le forme a. costituiscono una generalizzazione molto ampia delle funzioni a., in quanto sono definibili non soltanto, come quelle ... Leggi Tutto
CATEGORIA: ACUSTICA – FISICA MATEMATICA – FISICA TECNICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – RELATIVITA E GRAVITAZIONE – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA

minimo

Dizionario delle Scienze Fisiche (1996)

minimo mìnimo [agg. e s.m. Der. del lat. minimus "il più piccolo", superlativo di parvus "piccolo"] [LSF] (a) agg. Oltre che come superlativo di piccolo, si usa spesso in contrapp. a massimo. (b) Sostantivato, [...] perché un punto sia un punto di m. relativo che ivi la derivata prima sia nulla e che la derivata seconda sia positiva. Le precedenti definizioni si estendono direttamente a funzioni di più variabili. ◆ [ALG] M. di un insieme numerico: l'estremo ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – OTTICA – TEMI GENERALI – TERMODINAMICA E TERMOLOGIA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – ELETTRONICA – MECCANICA APPLICATA

congettura di Birch e Swinnerton-Dyer

Enciclopedia della Scienza e della Tecnica (2008)

congettura di Birch e Swinnerton-Dyer Massimo Bertolini È considerata una delle questioni fondamentali della matematica contemporanea. La congettura in questione stabilisce una relazione tra le proprietà [...] è effettuato su tutti i primi p che non dividono ΔΕ . Si dimostra che questo prodotto infinito converge a una funzione analitica (cioè derivabile in senso complesso) sul semipiano dei numeri complessi la cui parte reale è maggiore di 3/2. Inoltre, il ... Leggi Tutto
CATEGORIA: STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: ULTIMO TEOREMA DI FERMAT – NUMERI INTERI RELATIVI – GRUPPO COMMUTATIVO – PRODOTTO INFINITO – NUMERI COMPLESSI
Mostra altri risultati Nascondi altri risultati su congettura di Birch e Swinnerton-Dyer (1)
Mostra Tutti

esponenziale

Dizionario delle Scienze Fisiche (1996)

esponenziale esponenziale [agg. e s.m. Der. di esponente] [ANM] E. complesso: la funzione e. con argomento complesso, definibile a partire dalla serie e. (v. oltre); è legato alle funzioni seno e coseno [...] quale, per es., expx expy=exp(x+y), expx/expy=exp(x-y). Per quanto riguarda le proprietà differenziali, si tratta di una funzione infinitamente derivabile e le sue derivate sono ancora e.; precis., per l'e. di una sola variabile x, è (d/dx) expx=expx ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su esponenziale (2)
Mostra Tutti

metodo di concentrazione-compattezza

Enciclopedia della Scienza e della Tecnica (2008)

metodo di concentrazione-compattezza Daniele Cassani La soluzione di un problema variazionale è legata alla possibilità di trovare punti critici di un dato funzionale. Consideriamo il caso elementare [...] di una funzione f:(a,b)→ℝ derivabile con continuità e sia xν∈[a′,b′]⊂(a,b) tale che f(xν)→l e f′(xν)→0 per n→∞; l∈ℝ è detto livello critico. Essendo l’intervallo [a′,b′] chiuso e limitato, esiste x0∈[a′,b′] tale che xμ→x0, prendendo un’opportuna ‘ ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA

multiplo

Dizionario delle Scienze Fisiche (1996)

multiplo mùltiplo [agg. e s.m. Der. del lat. multiplus, da multus "molto"] [LSF] Non semplice, costituito da più enti semplici. ◆ [MTR] Unità di misura di una grandezza pari a un certo numero di volte [...] punto) si annullano; anche, punto singolare. ◆ [ALG] Radice m.: di ordine n, di un'equazione f(x)=0, ove f(x) è una funzione continua e derivabile, una radice a dell'equazione tale che quest'ultima è divisibile per (x-a)n ma non per (x-a)n+1; essa è ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – METROLOGIA – TEMI GENERALI – ALGEBRA
Mostra altri risultati Nascondi altri risultati su multiplo (2)
Mostra Tutti

rappresentabile

Dizionario delle Scienze Fisiche (2012)

rappresentabile rappresentàbile [Der. di rappresentare (→ rappresentazione) "che è suscettibile di rappresentazione"] [ALG] [FAF] Funzione r.: nella logica matematica, è tale una funzione di una o più [...] S se e solo se c'è in S una formula P(x₁,..., xn+1), tale che per ogni sostituzione di valori numerici k₁,..., kn+1 rispettiv. alle variabili x₁,..., xn+1, la formula P(k₁,..., kn+1) è derivabile in S se kn+1= f(k₁,..., kn), e, se altrimenti, è ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA – EPISTEMOLOGIA – METAFISICA

monogeneita

Dizionario delle Scienze Fisiche (1996)

monogeneita monogeneità [Der. di monogeno] [ANM] Condizioni di m.: lo stesso che condizioni di olomorfia di Cauchy-Riemann, che devono essere soddisfatte affinché una funzione sia analitica: la funzione [...] complessa f(z)=u(x, y)+iv(x, y) della variabile complessa z=x+iy è monogena od olomorfa o analitica in un dominio A se è derivabile in ogni punto di A; ciò si verifica se e solo se sono soddisfatte le condizioni di m. e cioè ðu/ðx=ðv/ðy e ðu/ðy=-ðv/ð ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
1 2 3 4 5
Vocabolario
derivàbile
derivabile derivàbile agg. [dal lat. tardo derivabĭlis]. – Che si può derivare (nelle varie accezioni di derivare1). In matematica, funzione d., funzione che ammette derivata.
funzióne
funzione funzióne s. f. [dal lat. functio -onis, der. di fungi «adempiere»]. – 1. Attività svolta abitualmente o temporaneamente in vista di un determinato fine, per lo più considerata nel complesso di un sistema sociale, burocratico, ecc....
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali