• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
74 risultati
Tutti i risultati [620]
Matematica [74]
Fisica [79]
Biografie [77]
Musica [54]
Temi generali [50]
Diritto [47]
Analisi matematica [42]
Filosofia [38]
Arti visive [35]
Medicina [31]

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2003)

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali Thomas Archibald Equazioni differenziali alle derivate parziali Nel corso del XIX sec. la teoria delle funzioni di più variabili [...] dell'attrazione, soprattutto nel caso di sferoidi non troppo diversi da sfere, in cui le prime funzioni armoniche sferiche rappresentano buone soluzioni approssimate. Per la prima volta i due matematici dedicarono particolare attenzione ai problemi ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Solitoni

Enciclopedia del Novecento (1989)

Solitoni Francesco Calogero SOMMARIO: 1. Introduzione: cenno storico.  2. Soluzione di equazioni lineari di evoluzione mediante la trasformata di Fourier.  3. L'equazione di Korteweg-de Vries.  4. La [...] ξ = (2p)-1 ln(ρ/2p). (26) b) Relazione fra cambiamenti della funzione u(x) e cambiamenti della sua trasformata spettrale. L'analogia con la tecnica di Fourier Fourier, o più generalmente l'analisi armonica, influenza molti altri campi della matematica ... Leggi Tutto
TAGS: INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS – EQUAZIONE ALLE DERIVATE PARZIALI – TEORIA QUANTISTICA DEI CAMPI – SPAZIO DELLE CONFIGURAZIONI – EQUAZIONE DI SCHRÒDINGER
Mostra altri risultati Nascondi altri risultati su Solitoni (4)
Mostra Tutti

Operatori, teoria degli

Enciclopedia del Novecento II Supplemento (1998)

Operatori, teoria degli Helmut H. Schaefer e Manfred P. Wolff Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] su K = R o K = C. Si dice che E è ‛normato' quando è data una funzione x → ∣x∣ di E su R che soddisfi gli assiomi se lo spazio E è completo nella costituito dall'operatore energia degli oscillatori armonici nella meccanica quantistica. Gli autospazi ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – MOLTIPLICAZIONE FRA MATRICI – TEOREMA DI CAYLEY-HAMILTON

La grande scienza. Combinatoria

Storia della Scienza (2003)

La grande scienza. Combinatoria Peter J. Cameron Combinatoria Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri essa non rappresenta una branca separata, [...] la matematica più sofisticata: teoria degli invarianti, analisi armonica, somme di Gauss, equazioni diofantee. Si tratta di un caso importante è quello in cui lo spazio consta di funzioni sui naturali o sugli interi, e la trasformazione è indotta ... Leggi Tutto
CATEGORIA: ALGEBRA

La grande scienza. Teoria dei numeri

Storia della Scienza (2003)

La grande scienza. Teoria dei numeri Anatolij A. Karatsuba Teoria dei numeri La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] ζ(s) cresce illimitatamente per s→1, (la serie armonica che si ottiene a destra per s=1 è divergente). J(N;k,n)>0 per N≥N1(k,n). Hardy e Littlewood introdussero inoltre due funzioni g(n) e G(n); la prima esprime il più piccolo valore di k per il ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo Jean-Paul Pier Il Bourbakismo L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] x tramite F. Si dice che una corrispondenza f=(F, A, B) è una funzione se il suo grafico F è funzionale e se il suo insieme di partenza è uguale struttura dei gruppi localmente compatti commutativi G e la sintesi armonica in L1(G), L∞(G), L2(G). In ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. I metodi numerici

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. I metodi numerici Peter Schreiber I metodi numerici Il XVII sec. è stato in generale un 'secolo geometrico'. A parte alcune considerazioni di carattere puramente numerico, [...] qui di nuovo la relazione sopra menzionata tra la serie armonica, il logaritmo naturale e la costante C. Naturalmente questo metodo porta a risultati utili solamente quando la funzione da interpolare in un dato intervallo ha un andamento non ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali Haïm Brezis Felix Browder Equazioni differenziali alle derivate parziali Lo studio delle equazioni [...] più tardi localizzate da Gårding. Il principio del massimo e applicazioni; le stime di De Giorgi-Nash Un principio che caratterizza le funzioni armoniche in un dominio Ω di Rn è che, per ogni x, per ogni palla Br(x) di Ω, dove denota la media ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica Jeremy Gray Geometria algebrica Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] Il problema consisteva nel fatto che una stretta relazione tra funzioni armoniche e funzioni analitiche esiste soltanto in dimensione 1. Hodge mostrò come costruire forme armoniche di periodo arbitrario, ossia, nella terminologia che Weil preferiva e ... Leggi Tutto
CATEGORIA: GEOMETRIA – STATISTICA E CALCOLO DELLE PROBABILITA

L'Età dei Lumi: matematica. La teoria dei numeri

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. La teoria dei numeri Günther Frei La teoria dei numeri La teoria dei numeri (o aritmetica) tratta delle proprietà dei numeri. Lungo tutta la sua storia, un tema dominante [...] si ha: [3] aφ(m)≡1 (mod m), in cui φ(m) è la cosiddetta 'funzione di Euler', che conta il numero di interi tra 0 e m che sono primi con m. utilizzò, tra l'altro, per accertare che la serie armonica è divergente, cioè (teorema 8.1): è divergente. ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – ARITMETICA – STORIA DELLA MATEMATICA
1 2 3 4 5 6 7 8
Vocabolario
armònica
armonica armònica s. f. [dall’agg. armonico; nel sign. 1, dall’ingl. harmonica]. – 1. Nome di varî strumenti musicali: a. Strumento d’origine inglese (sec. 18°) costituito da una serie di piccole coppe di cristallo di digradante grandezza...
armònico
armonico armònico agg. [dal lat. harmonĭcus, gr. ἁρμονικός] (pl. m. -ci). – 1. Che risponde alle leggi dell’armonia, che ha o produce armonia: una serie a. di accordi; un a. concerto di voci; fig., ben proporzionato, ben accordato insieme:...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali