Helmholtz Hermann Ludwig Ferdinand von
Helmholtz 〈hèlmolz〉 Hermann Ludwig Ferdinand von [STF] (Potsdam 1821 - Berlino 1894) Prof. di fisiologia nell'univ. di Königsberg (1849) e di anatomia e fisiologia [...] al contorno, la distribuzione che soddisfa le equazioni del moto è quella per la quale l'integrale esteso a tutto il volume della funzione di dissipazione (prodotto scalare del gradiente di velocità per sé stesso) ha il valore minimo. ◆ [OTT ...
Leggi Tutto
Legendre Adrien-Marie
Legendre 〈lëgŠàndr〉 Adrien-Marie [STF] (Tolosa 1752 - Parigi 1833) Prof. di matematica nell'École militaire di Parigi (1775); passò a dirigere, nel Bureau des longitudes (1787), [...] in esse si ponga ϑ=š/2, le espressioni ottenute si chiamano integrali ellittici completi di L.; questi ultimi sono importanti in quanto ogni integrale del tipo ∫R(x)P1/2dx, con R funzione razionale e P polinomio in x di terzo o quarto grado privo di ...
Leggi Tutto
Dirichlet Peter Gustav Lejeune
Dirichlet 〈diriklé〉 Peter Gustav Lejeune [STF] (Düren, presso Aquisgrana, 1805 - Gottinga 1859) Prof. di matematica nell'univ. di Berlino, succedette a Gauss nell'univ. [...] f(x)=0 per x irrazionale, f(x)=1 per x razionale, che è discontinua ovunque. ◆ [ANM] Integrale di D.: di una funzione f(x) l'espressione (2π)-1∫x+πx-π f(ξ){ sin[(n+1/2)(ξ-x)]/sin[(1/2)(ξ-x)]}dx; rappresenta la somma parziale Sn(x) di una serie ...
Leggi Tutto
formule di Newton-Cotes
Alfio Quarteroni
Per calcolare numericamente l’integrale definito I(f)=∫∮]] f (x)dx, le formule di Newton-Cotes si ottengono sostituendo la funzione integranda f(x) con un polinomio [...] quadratura di Newton-Cotes su n+1 nodi. Per es., indicando ancora con I(f{[) l’integrale approssimato, la formula dei trapezi composita si leggerà
Se la funzione integranda è sufficientemente regolare, si può dimostrare che l’errore E{[(f)=I(f)−I(f ...
Leggi Tutto
Riemann Bernhard
Riemann 〈rìiman〉 Bernhard [STF] (Breselenz 1826 - Intra 1866) Prof. di matematica nell'univ. di Gottinga (1857). ◆ [ALG] Formula di R.-Hurwitz: v. Riemann, superfici di: V 4 b. ◆ [ALG] [...] di R.: v. Riemann, superfici di: V 6 b. ◆ [ANM] Funzione zeta di R.: v. funzioni di variabile complessa: II 781 d. ◆ [ANM] Integrabilità secondo R.-Stieltjes: v. misura e integrazione: IV 4 a. ◆ [ANM] Integrale di R.: v. misura e integrazione: IV 3 f ...
Leggi Tutto
trasformata di Fourier
Luca Tomassini
Una trasformazione integrale che mappa una funzione a valori complessi f(x):ℝn→ℂ nella sua corrispondente trasformata di Fourier (detta anche funzione spettrale [...] da L1(ℝn,ℂ) a C(ℝn,ℂ). L’esistenza dell’inversa (ossia dell’integrale [3]) non è però garantita poiché la funzione ff∼(p) non è necessariamente sommabile. Anche nel caso
[5] formula
l’integrale in [1] esiste, ma inoltre ∣∣f∼(p)∣∣2=∣∣f(x)∣∣2: la ...
Leggi Tutto
trasformata di Laplace
Luca Tomassini
Nozione introdotta da Pierre-Simon de Laplace nel suo famoso Théorie analitique des probabilités (1812) e da lui utilizzata per risolvere equazioni differenziali [...] di tutti gli s tali che Res>σc. Se l’integrale non converge mai si scrive allora σc=+∞, se converge ovunque σc=−∞. Nella regione di convergenza Res>σc, L(s) è una funzione olomorfa e si ha (analogamente al caso della trasformata di Fourier)
...
Leggi Tutto
Lagrange Giuseppe Luigi
Lagrange 〈lagràngë〉 (it. Lagràngia) Giuseppe Luigi (in fr. Joseph-Louis) [STF] (Torino 1736 - Parigi 1813) Prof. di matematica nella Scuola di artiglieria a Torino (1755), poi, [...] forma delle linee di velocità del fluido. ◆ [MCC] Funzione di L.: lo stesso che lagrangiana. ◆ [ANM] coniugati P e P' è nyα=n'y'α' (v. fig.). ◆ [OTT] Invariante integrale di L.: v. ottica geometrica: IV 384 f. ◆ [MCC] Inversione del teorema di L ...
Leggi Tutto
operatori hermitiani
Luca Tomassini
Sia A:ℋ→ℋ un operatore lineare continuo (limitato) di uno spazio di Hilbert in sé e siano (∙,∙) il prodotto scalare di ℋ e ∣∣∙∣∣ la norma da esso indotta. Fissato [...] fenomeno corrisponde, approssimativamente, la trasformazione della serie in [1] in un integrale
[3] formula
dove dP(λ) è detta misura spettrale. La definizione del concetto di funzioni di un operatore hermitiano resta analoga ed è alla base del ...
Leggi Tutto
Dirac Paul Adrien Maurice
Dirac 〈dirèk〉 Paul Adrien Maurice [STF] (Bristol 1902 - m. in Florida 1984) Prof. di matematica nell'univ. di Cambridge (1932); ebbe il premio Nobel per la fisica nel 1933 per [...] quantistica: II 298 d. ◆ [ANM] Delta di D.: lo stesso che funzione delta di D. (v. oltre). ◆ [EMG] Equazione di D.: v. (v. sopra). ◆ [MCQ] Propagatore libero del campo di D.: v. integrale sui cammini: III 232 b. ◆ [FSN] Relazione di D.: v. monopolo ...
Leggi Tutto
integrale
agg. e s. m. [dal lat. tardo integralis, der. di intĕger «integro, intero»]. – 1. agg., non com. Di elemento che fa parte di un tutto, che concorre alla costituzione di un intero (sinon. quindi di integrante): i corpi i. del mondo...
filo-integralista
agg. Che sostiene le posizioni più radicali e intolleranti. ◆ Giancesare Flesca [...] assistendo da un terrazzo alla scena atroce di un cecchino che sparava su dei bambini si beccò una fucilata dalla polizia. Non che questo...