• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
lingua italiana
196 risultati
Tutti i risultati [1147]
Matematica [196]
Fisica [144]
Temi generali [144]
Economia [119]
Diritto [99]
Medicina [92]
Analisi matematica [81]
Biologia [78]
Scienze demo-etno-antropologiche [65]
Fisica matematica [68]

La grande scienza. Cronologia scientifica: 1951-1960

Storia della Scienza (2003)

La grande scienza. Cronologia scientifica: 1951-1960 1951-1960 1951 Sui gruppi di omotopia e di omologia. In una serie di articoli (Homologie singulière des espaces fibrés) Jean-Pierre Serre fornisce [...] di tre variabili si può scrivere come composizione di più funzioni di due variabili? V.I. Arnold prova che ogni funzione reale continua di tre variabili si può scrivere come somma di tre termini costituiti da composizioni di funzioni di due variabili ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – ANTROPOLOGIA FISICA – BIOCHIMICA – STORIA DELLA BIOLOGIA – CHIMICA FISICA – STORIA DELLA CHIMICA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA

Numeri, teoria dei

Enciclopedia del Novecento (1979)

Numeri, teoria dei LLarry Joel Goldstein di Larry Joel Goldstein SOMMARIO: 1. Introduzione: a) argomenti fondamentali; b) la teoria dei numeri nel XVII e XVIII secolo; c) Gauss. □ 2. Teoria algebrica [...] : Facendo il cambiamento di variabile t=q-s, la funzione che ne risulta, log ζ(V, s), appare più simile, almeno formalmente, alle altre funzioni zeta discusse; precisamente: Facendo l'esponenziale, si ottiene per certi numeri reali am. La ... Leggi Tutto
TAGS: TEOREMA FONDAMENTALE DELL'ARITMETICA – LEGGE DI RECIPROCITÀ QUADRATICA – DOMINIO A FATTORIZZAZIONE UNICA – COSTRUIBILE CON RIGA E COMPASSO – TEOREMA DI KRONECKER-WEBER

La civiltà islamica: antiche e nuove tradizioni in matematica. L'algebra e il suo ruolo unificante

Storia della Scienza (2002)

La civilta islamica: antiche e nuove tradizioni in matematica. L'algebra e il suo ruolo unificante Roshdi Rashed L'algebra e il suo ruolo unificante La seconda metà del VII sec. vede il costituirsi [...] : Prende allora x3=10,1, e così di seguito. I primi termini di questa successione sono [65] x1=11>x2=10,3>x3=10,1>… Al-Iṣfahānī sceglie il valore 11 in un modo un po' diverso. Invece della funzione f ne considera una che la maggiora, cioè ... Leggi Tutto
CATEGORIA: ALGEBRA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Le origini della teoria dei gruppi

Storia della Scienza (2003)

L'Ottocento: matematica. Le origini della teoria dei gruppi Jeremy Gray Le origini della teoria dei gruppi La teoria di Galois e la soluzione algebrica delle equazioni algebriche La teoria di Galois [...] variabili x1,…,xn e con a i parametri a1,…,ak, le trasformazioni finite possono rappresentarsi nella forma x′=f(x,a). Le trasformazioni infinitesime associate a queste si ottengono differenziando le funzioni f numero insufficiente di punti reali in ... Leggi Tutto
CATEGORIA: ALGEBRA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea

Storia della Scienza (2003)

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea Jeremy Gray Dalla geometria proiettiva alla geometria euclidea La geometria proiettiva La carriera del matematico francese [...] Reale Accademia Danese delle Scienze), egli mostrava che su una superficie si può sempre introdurre un sistema di coordinate (u,v) per il quale una funzione F alla richiesta che la funzione F sia una funzione della variabile complessa u+iv. ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Teoria dei numeri

Storia della Scienza (2003)

L'Ottocento: matematica. Teoria dei numeri Catherine Goldstein Teoria dei numeri Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] reale sia complessa. L'eredità di Legendre e di funzioni algebriche di una variabile, ossia delle funzioni f(z) che soddisfano un'equazione polinomiale P(z,f(z))=0, basandosi su alcune analogie tra queste funzioni e i campi di numeri. Alla nozione di ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. La probabilità

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La probabilita Eugenio Regazzini La probabilità Evoluzione della nozione di probabilità La grande difficoltà in cui si dibattevano i cultori [...] }) in corrispondenza a ogni n-upla (x1,…,xn) di numeri reali. Nella formulazione classica si assume, inoltre, che ogni di variabili aleatorie, e il teorema centrale precisa le condizioni sotto le quali la successione delle funzioni di ripartizione di ... Leggi Tutto
CATEGORIA: STATISTICA E CALCOLO DELLE PROBABILITA

L'Ottocento: matematica. Il rigore in analisi

Storia della Scienza (2003)

L'Ottocento: matematica. Il rigore in analisi Umberto Botta Il rigore in analisi L'eredità di Lagrange All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] di una funzione f(x) era la ricerca di una funzione "primitiva" F(x) tale che la sua "funzione derivata" F′(x) fosse la funzione f(x) di Fondamenti per la teorica delle funzioni delle variabili reali (1878) e Serie di Fourier e altre rappresentazioni ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. Lo sviluppo della teoria della probabilità e della statistica

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Lo sviluppo della teoria della probabilita e della statistica Oscar Sheynin Lo sviluppo della teoria della probabilità e della statistica I primi sviluppi del calcolo delle [...] −1), (v−2), … 1. La funzione 'generatrice' di Simpson era in questo caso [33] f (r)=r-v+2r-v+1+…+(v+1 reale dell'origine della probabilità era l'esistenza di leggi stocastiche che determinavano il comportamento di somme (o altre funzioni) di variabili ... Leggi Tutto
CATEGORIA: STATISTICA E CALCOLO DELLE PROBABILITA – STORIA DELLA MATEMATICA

La grande scienza. Geometria non commutativa

Storia della Scienza (2003)

La grande scienza. Geometria non commutativa Alain Connes Geometria non commutativa Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] spettrale. Una variabile reale corrisponde a un operatore autoaggiunto; il suo spettro è reale e si può agire su di essa con una qualunque funzione misurabile. In generale si può agire su una variabile complessa solo con funzioni olomorfe, e ... Leggi Tutto
CATEGORIA: GEOMETRIA
1 2 3 4 5 6 7 8 ... 20
Vocabolario
funzióne
funzione funzióne s. f. [dal lat. functio -onis, der. di fungi «adempiere»]. – 1. Attività svolta abitualmente o temporaneamente in vista di un determinato fine, per lo più considerata nel complesso di un sistema sociale, burocratico, ecc....
variàbile
variabile variàbile agg. e s. f. [dal lat. tardo variabĭlis, der. di variare «variare»]. – 1. agg. Che varia, che può variare, che è soggetto a variare: grandezza, valore, norma v.; il prezzo è v. secondo le stagioni e la richiesta; quindi...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali