NUMERICI CALCOLI (XXV, p. 29)
Enzo APARO
Generalità. - Il concetto di calcolo numerico si può introdurre da un punto di vista generale, come segue. Un insieme finito di oggetti, un insieme finito di [...] dello spazio reale euclideo Rn; fi (x1, ..., xn) (i = 1, .., n) n funzioni reali continue in A ed F(x1, ..., xn) una funzione reale, definita in A, due volte parzialmente derivabile rispetto alle xi in A con derivate ivi continue. Inoltre il sistema ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La teoria degli insiemi
Gabriele Lolli
La teoria degli insiemi
La teoria degli insiemi è universalmente considerata, nella sua concezione e impostazione [...] non vuoti esiste una funzione definita su T tale che f(A)∈A per ogni A. Tali funzioni, oggi dette funzioni di scelta, sono chiamate teoria è refutabile l'assioma di scelta, mentre è derivabile l'assioma dell'infinito. Ancora non è stato possibile ...
Leggi Tutto
FAVERO, Giovanni Battista
Enzo Pozzato
Nacque a Crespano Veneto (ora Crespano del Grappa, in prov. di Treviso) il 27 giugno 1832, da Pietro e da Candida Gianese. Le ristrettezze economiche lo costrinsero [...] ciò in base ad un semplicissimo teorema di geometria elementare. Inoltre il F. osservava che il diagramma delle forze si compone sempre di tre un'equazione con una funzione incognita con m variabili indipendenti e derivabile, fino ad un certo ...
Leggi Tutto
armonico
armònico [agg. (pl.m. -ci) e s.m. Der. del gr. harmonikós, da harmózo "accordare"] [LSF] Termine inizialmente proprio dell'arte musicale, dall'accez. relativa alle corde di alcuni strumenti [...] a.: (a) lo stesso che campo solenoidale, in quanto derivante da un potenziale a. (v. oltre); (b) talora ciascuno dei termini dello sviluppo dell'analisi a. di una funzione data (anche armonica s.f.). ◆ [RGR] Coordinate a.: v. relatività generale: IV ...
Leggi Tutto
minimo
mìnimo [agg. e s.m. Der. del lat. minimus "il più piccolo", superlativo di parvus "piccolo"] [LSF] (a) agg. Oltre che come superlativo di piccolo, si usa spesso in contrapp. a massimo. (b) Sostantivato, [...] (x₀); x₀ è detto minimante per la f(x); si dice m. assoluto della funzione nel detto intervallo il m. (se esiste) dei valori assunti in esso dalla funzione; in ogni caso, se la f(x) è derivabile, condizione sufficiente perché un punto sia un punto di ...
Leggi Tutto
congettura di Birch e Swinnerton-Dyer
Massimo Bertolini
È considerata una delle questioni fondamentali della matematica contemporanea. La congettura in questione stabilisce una relazione tra le proprietà [...] questo prodotto infinito converge a una funzione analitica (cioè derivabile in senso complesso) sul semipiano si scrive come (s−1)ϱf(s), dove f(s) è una funzione analitica sul piano complesso tale che f(1)0. Più precisamente, essa afferma che l’ ...
Leggi Tutto
multiplo
mùltiplo [agg. e s.m. Der. del lat. multiplus, da multus "molto"] [LSF] Non semplice, costituito da più enti semplici. ◆ [MTR] Unità di misura di una grandezza pari a un certo numero di volte [...] molteplicità del punto) si annullano; anche, punto singolare. ◆ [ALG] Radice m.: di ordine n, di un'equazione f(x)=0, ove f(x) è una funzione continua e derivabile, una radice a dell'equazione tale che quest'ultima è divisibile per (x-a)n ma non per ...
Leggi Tutto
rappresentabile
rappresentàbile [Der. di rappresentare (→ rappresentazione) "che è suscettibile di rappresentazione"] [ALG] [FAF] Funzione r.: nella logica matematica, è tale una funzione di una o più [...] x₁,..., xn+1), tale che per ogni sostituzione di valori numerici k₁,..., kn+1 rispettiv. alle variabili x₁,..., xn+1, la formula P(k₁,..., kn+1) è derivabile in S se kn+1= f(k₁,..., kn), e, se altrimenti, è derivabile la negazione di P(k₁,..., kn+1). ...
Leggi Tutto
monogeneita
monogeneità [Der. di monogeno] [ANM] Condizioni di m.: lo stesso che condizioni di olomorfia di Cauchy-Riemann, che devono essere soddisfatte affinché una funzione sia analitica: la funzione [...] complessa z=x+iy è monogena od olomorfa o analitica in un dominio A se è derivabile in ogni punto di A; ciò si verifica se e solo se sono soddisfatte le condizioni di m. e cioè ðu/ðx=ðv/ðy e ðu/ðy=-ðv/ðx: v. funzioni di variabile complessa: II 776 ...
Leggi Tutto
funzione
funzióne s. f. [dal lat. functio -onis, der. di fungi «adempiere»]. – 1. Attività svolta abitualmente o temporaneamente in vista di un determinato fine, per lo più considerata nel complesso di un sistema sociale, burocratico, ecc....
derivata
s. f. [da derivato, part. pass. di derivare1]. – Concetto fondamentale nell’analisi matematica e nelle sue applicazioni che esprime, date due grandezze l’una funzione dell’altra (per es., in fisica, lo spazio percorso e il tempo impiegato...