• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
179 risultati
Tutti i risultati [179]
Matematica [30]
Fisica [17]
Archeologia [18]
Arti visive [17]
Analisi matematica [14]
Temi generali [10]
Medicina [9]
Storia della matematica [8]
Fisica matematica [7]
Economia [7]

Analisi non lineare: metodi variazionali

Enciclopedia della Scienza e della Tecnica (2007)

Analisi non lineare: metodi variazionali Antonio Ambrosetti I primi problemi di calcolo delle variazioni si presentano quasi spontaneamente, anche nello studio della geometria elementare e hanno infatti [...] ha senso considerare il funzionale T. Supponendo, per esempio, che L sia convessa in u′ e verifichi [13] L(x,u,u′)≥c1∣u′∣2 ottenuti sopra non siano più validi. Consideriamo la funzione f : ℝ→ℝ, definita ponendo f(x)=(1+x2)−1. Prendendo a〈0〈b〈1 ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE ALLE DERIVATE PARZIALI – PROBLEMA DELLA BRACHISTOCRONA – CALCOLO DELLE VARIAZIONI – EQUAZIONE DI SCHRÖDINGER – PROIEZIONE STEREOGRAFICA

L'Ottocento: matematica. Metodi del calcolo numerico

Storia della Scienza (2003)

L'Ottocento: matematica. Metodi del calcolo numerico Dominique Tournès Metodi del calcolo numerico Prima del 1870 l'analisi numerica non si era ancora sviluppata come disciplina autonoma; esisteva [...] coefficienti diagonali sono preponderanti, esso si scrive: [12]  Xn+1=D-1(E+F)Xn+D-1B. Sia nel metodo di Jacobi sia in quello di Gauss-Seidel fatto (di cui si è già detto sopra) che una funzione convessa è al di sotto delle sue corde e al di sopra ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. L'economia matematica 1870-1950

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. L'economia matematica 1870-1950 Angelo Guerraggio L'economia matematica 1870-1950 Di matematica sociale comincia a parlare Condorcet nella Francia [...] da Wald, il quale, in realtà, analizza due modelli leggermente diversi, con ipotesi differenti sulla funzione f. Nel primo introduce una condizione di convessità e di non saturazione, che in parte poi modifica richiedendo che, per un incremento Δy ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Calcolo delle variazioni

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Calcolo delle variazioni Craig Fraser Mario Miranda Calcolo delle variazioni Tra il 1870 e il 1920 si assiste al consolidamento degli argomenti [...] dal matematico ungherese Alfréd Haar (1885-1933), in una nota del 1927. Haar considerò una qualunque funzione F di n variabili, non negativa e strettamente convessa, cioè per ogni x∈ℝn e per ogni λ=(λ1,...λν)∈ℝn−{0}. Per ogni aperto limitato ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Legendre, trasformazione di

Enciclopedia della Matematica (2013)

Legendre, trasformazione di Legendre, trasformazione di trasformazione che associa a una data funzione una nuova funzione che ha come argomento la derivata della funzione iniziale. Si considerino una [...] funzione ƒ(x) convessa e un numero p. Introdotta la funzione F(p, x) = px − ƒ(x), che rappresenta, a meno del segno, la distanza verticale tra il grafico di ƒ(x) e la retta per l’origine di coefficiente angolare p, si identifica per ogni valore di p ... Leggi Tutto
TAGS: TRASFORMATA DI LEGENDRE – COEFFICIENTE ANGOLARE – FUNZIONE Ƒ CONVESSA – MECCANICA ANALITICA – PRODOTTO SCALARE

concavita

Enciclopedia della Matematica (2013)

concavita concavità proprietà di una curva piana o di una superficie, strettamente legata a quella di → convessità. ☐ In geometria, una figura piana possiede una concavità quando non è convessa, quando [...] nel suo dominio il suo grafico sta al di sotto di quello del segmento congiungente i punti (a, ƒ(a)) e (b, ƒ(b)) (funzione convessa). Il grafico della funzione ƒ(x) volge, quindi, la concavità nel verso positivo dell’asse y in un punto x0 se esiste ... Leggi Tutto
TAGS: GRAFICO DI UNA FUNZIONE – FUNZIONE DERIVABILE – MATRICE HESSIANA – FORMA QUADRATICA – ANGOLO PIATTO

coniugata di Fenchel

Enciclopedia della Scienza e della Tecnica (2008)

coniugata di Fenchel Arrigo Cellina Sia f una funzione convessa definita su uno spazio di Hilbert X; si chiama polare di f, o trasformata o coniugata di Fenchel, o di Legendre, la funzione f * definita [...] es., la coniugata della funzione f(x)=(1/p)∥x∥π (dove ∥x∥ indica la norma di x) è la funzione f*(z)=(1/p)∥z∥ϑ con (1/p)+(1/q)=1 e la disuguaglianza precedente diventa 〈z, x〉 ≤ (1/p) ∥x∥π + (1/q) ∥z∥ϑ nota come disuguaglianza di Young. → Convessità ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: FUNZIONE CONVESSA – SPAZIO DI HILBERT – FUNZIONI AFFINI

epigrafo

Enciclopedia della Matematica (2013)

epigrafo epigràfo riferito al grafico di una funzione y = ƒ(x), denota l’insieme dei punti del piano situati sul grafico o al di sopra di esso, cioè l’insieme dei punti (x, y) tali che y ≥ ƒ(x). Più [...] quelle di un punto del dominio A della funzione e come (n + 1)-esima coordinata un numero reale maggiore o uguale al valore assunto dalla funzione in xn. Se A è un insieme convesso, la funzione è convessa se e solo se tale è il suo epigràfo ... Leggi Tutto
TAGS: GRAFICO DI UNA FUNZIONE – INSIEME CONVESSO – NUMERO REALE – SE E SOLO SE

PROGRAMMAZIONE NON LINEARE

Enciclopedia Italiana - V Appendice (1994)

PROGRAMMAZIONE NON LINEARE Amato Herzel (App. IV, III, p. 70) Sia nel campo metodologico, sia in quello computazionale, si sono registrati negli ultimi tempi notevoli progressi. Ci si limiterà qui a [...] convesso (cioè un problema consistente nella minimizzazione di una funzione obiettivo convessa in un insieme definito dai vincoli che è convesso part 1, a cura di G.B. Dantzig e A.F. Veinott Jr., Providence 1968; O.L. Mangasarian, Simplified ... Leggi Tutto
TAGS: PROGRAMMAZIONE LINEARE – TEORIA DEI GIOCHI – SERIE DI TAYLOR – PUNTI DI SELLA – LAGRANGIANA
Mostra altri risultati Nascondi altri risultati su PROGRAMMAZIONE NON LINEARE (2)
Mostra Tutti

Dalla funzione convessa alla convessita generalizzata

Enciclopedia della Matematica (2017)

Dalla funzione convessa alla convessita generalizzata Dalla funzione convessa alla convessità generalizzata Sebbene l’idea geometrica di figura convessa risalga a tempi lontani, la definizione moderna [...] ai primi del Novecento. La stessa terminologia – funzione convessa e funzione concava – è stata a lungo oscillante. Oggi si chiama «concava» una funzione f quando la sua opposta −f risulta convessa nel senso che verrà precisato (e questo permette ... Leggi Tutto
TAGS: GRAFICO DI UNA FUNZIONE – FUNZIONE CRESCENTE – PUNTO STAZIONARIO – FUNZIONE CONCAVA – FIGURA CONVESSA
1 2 3 4 5 6 7 8 ... 18
Vocabolario
òcchio
occhio òcchio s. m. [lat. ŏcŭlus]. – 1. a. In anatomia, organo di senso, pari, caratteristico dei vertebrati, che ha la funzione di ricevere gli stimoli luminosi e di trasmetterli ai centri nervosi dando origine alle sensazioni visive; è costituito...
curva¹
curva1 curva1 s. f. [femm. sostantivato dell’agg. curvo]. – 1. a. Nel linguaggio com., ogni linea che non sia retta. b. In matematica, sinon. di linea, intendendosi quindi anche la retta come una particolare curva. Molte curve di tipo particolare...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali