• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
64 risultati
Tutti i risultati [64]
Matematica [41]
Analisi matematica [20]
Algebra [12]
Geometria [7]
Fisica [8]
Fisica matematica [7]
Storia della matematica [6]
Storia della fisica [4]
Filosofia [4]
Biologia [4]

ramo

Enciclopedia on line

Botanica L’asse secondario di un tallo o di uno dei 3 costituenti del cormo (radice, fusto, foglia), con stesso valore morfologico dell’asse primario. Negli alberi si distinguono i r. primari (o maestri), [...] . cuspidale di equazioni x=t2, y=t3. R. di una funzione olomorfa ω=f(z) di una variabile complessa z, nell’intorno dei valori ω0, z0, essendo ω0=f(z0), è l’insieme dei valori della funzione dati da una serie di potenze, nel suo cerchio di convergenza ... Leggi Tutto
CATEGORIA: ANATOMIA MORFOLOGIA CITOLOGIA – ALGEBRA – ANALISI MATEMATICA
TAGS: CORRISPONDENZA BIUNIVOCA – GEOMETRIA ALGEBRICA – FUNZIONE OLOMORFA – SERIE DI POTENZE – CURVA PIANA

singolarità

Enciclopedia on line

singolarità fisica In fluidodinamica, qualsiasi punto del campo di moto di un fluido irrotazionale, non viscoso e a densità costante in cui la funzione potenziale di velocità Φ assuma valore infinito o [...] nulli è − m, il polo si dirà di ordine m. La s. si dice algebrica se f non è olomorfa nell’intorno di z0, ma la funzione ausiliaria F(t)=f(z0+tn), oppure Φ(t)=f(z0+et) è olomorfa in un intorno di 0. In base al numero e ai tipi di s. che possiedono ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA DEI FLUIDI – ANALISI MATEMATICA – GEOMETRIA
TAGS: FUNZIONE VETTORIALE – CURVA ALGEBRICA – FLUIDODINAMICA – RETTA TANGENTE – IRROTAZIONALE
Mostra altri risultati Nascondi altri risultati su singolarità (3)
Mostra Tutti

SIMBOLICO, CALCOLO

Enciclopedia Italiana - III Appendice (1961)

SIMBOLICO, CALCOLO Fernando BERTOLINI . 1. - Generalità. - A tutti è noto che, dovendo calcolare un'espressione come la seguente: conviene calcolare invece la seguente: la quale darà il logaritmo del [...] t risulti integrabile sull'intero intervallo (0, + ∞). Per ciascuna funzione ("oggetto") F ε A risulta determinata in corrispondenza una funzione ("immagine") della variabile complessa s, olomorfa in un semipiano (del piano di Gauss) del tipo: "parte ... Leggi Tutto
TAGS: EQUAZIONE A DERIVATE PARZIALI – EQUAZIONE DIFFERENZIALE – TRASFORMATE DI LAPLACE – CONDIZIONI AI LIMITI – CALCOLO LOGARITMICO
Mostra altri risultati Nascondi altri risultati su SIMBOLICO, CALCOLO (11)
Mostra Tutti

Fermat, ultimo teorema di

Enciclopedia del Novecento (2004)

Fermat, ultimo teorema di MMassimo Bertolini di Massimo Bertolini SOMMARIO: 1. Introduzione. ▭ 2. Storia: il lavoro di Kummer. ▭ 3. Estensioni abeliane di Q. ▭ 4. Estensioni esplicite di campi e funzioni [...] all'azione di Γ0(N)) f(γ z) = (cz + d)kf(z) per ogni γ ∈ Γ0(N) e che soddisfa una condizione di meromorfia nell'insieme delle 'cuspidi' P1(Q) = Q ⋃{∞}. Una funzione modulare è chiamata 'forma modulare' se è olomorfa ovunque (cuspidi incluse). (Una ... Leggi Tutto
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – RELAZIONE DI EQUIVALENZA – POLINOMIO IRRIDUCIBILE – ALEXANDER GROTHENDIECK – ADRIEN MARIE LEGENDRE
Mostra altri risultati Nascondi altri risultati su Fermat, ultimo teorema di (2)
Mostra Tutti

La grande scienza. Geometria non commutativa

Storia della Scienza (2003)

La grande scienza. Geometria non commutativa Alain Connes Geometria non commutativa Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] con una qualunque funzione misurabile. In generale si può agire su una variabile complessa solo con funzioni olomorfe, e ciò data dall'uguaglianza dove P è il proiettore P=(1+F)/2, F=Segno(D). È facile vedere che questa applicazione si calcola ... Leggi Tutto
CATEGORIA: GEOMETRIA

Geometria differenziale

Enciclopedia del Novecento (1978)

Geometria differenziale SShoshichi Kobayashi di Shoshichi Kobayashi Geometria differenziale sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] per n=3, data da E. de Giorgi (1965), per n=4, data da F. J. Almgren (1966), e per n=5, 6, 7, data da J. Simons lo spazio euclideo complesso Cn e le funzioni differenziabili con le funzioni olomorfe (cioè analitiche complesse), si arriva ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – FUNZIONI DI VARIABILE COMPLESSA – REGIONE SEMPLICEMENTE CONNESSA – CALCOLO DIFFERENZIALE ASSOLUTO
Mostra altri risultati Nascondi altri risultati su Geometria differenziale (3)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale Jeremy Gray Geometria differenziale La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] una superficie è necessariamente espressa da una funzione olomorfa. Vi fu anche un notevole interesse lo spazio ambiente. Vi è poi la fibra, che è anch'essa una varietà, diciamo F, e che è uno spazio di parametri associato a ogni punto di B. Vi è ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

Matematica: problemi aperti

Enciclopedia della Scienza e della Tecnica (2007)

Matematica: problemi aperti Claudio Procesi Prima di parlare dei problemi aperti nella matematica è bene riflettere su quelli che ne hanno segnato la storia passata. Sono infatti proprio questi che [...] trovano sulla striscia critica 0≤Re(s)≤1 e coincidono con quelli della funzione ξ(s), olomorfa in tutto il piano. Inoltre, il numero di quelli compresi fra 0 e il problema classico è determinare le funzioni f(a0,…,an) dei coefficienti che siano ... Leggi Tutto
CATEGORIA: TEMI GENERALI
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – CONGETTURA DI BIRCH E SWINNERTON-DYER – INTERNATIONAL MATHEMATICAL UNION – METODO DI ELIMINAZIONE DI GAUSS – FUNZIONE DI VARIABILE COMPLESSA
Mostra altri risultati Nascondi altri risultati su Matematica: problemi aperti (14)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri Günther Frei Teoria analitica dei numeri La teoria analitica dei numeri non è una teoria matematica ben definita, [...] funzione generatrice di Euler P(x) della funzione di partizione p(n) data dalla [6]. P(x) è una funzione olomorfa per ∣x∣⟨1, connessa alla funzione di G, vale a dire per quei primi per i quali F(x) si spezza in un dato modo modulo p. Egli dimostrò ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Riemann, superficie di

Enciclopedia della Matematica (2013)

Riemann, superficie di Riemann, superficie di ente geometrico ideato da B. Riemann per rendere monodroma una funzione polidroma complessa, di variabile complessa, w = ƒ(z), in modo da poter mettere i [...] ln|z| + iArgz + 2kπi, con k intero arbitrario, ciascuna delle quali si riduce al campo in cui la funzione risulta appunto olomorfa: ciò si ottiene prendendo, per ogni k, il piano complesso Ck* privato dell’origine, tagliandolo lungo il semiasse reale ... Leggi Tutto
TAGS: CORRISPONDENZA BIUNIVOCA – SUPERFICIE DI RIEMANN – FUNZIONE POLIDROMA – VARIETÀ COMPLESSA – FUNZIONI OLOMORFE
1 2 3 4 5 6 7
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali