• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
64 risultati
Tutti i risultati [64]
Matematica [41]
Analisi matematica [20]
Algebra [12]
Geometria [7]
Fisica [8]
Fisica matematica [7]
Storia della matematica [6]
Storia della fisica [4]
Filosofia [4]
Biologia [4]

Sistemi dinamici

Enciclopedia del Novecento II Supplemento (1998)

Sistemi dinamici Giovanni Jona-Lasinio Ya. G. Sinai Origini e sviluppo, di Giovanni Jona-Lasinio Risultati recenti, di Ya. G. Sinai Origini e sviluppo di Giovanni Jona-Lasinio SOMMARIO: 1. Introduzione.  [...] SD (v., ad esempio, Furstenberg, 1981). 7. Dinamica olomorfa. - Uno dei più noti sistemi dinamici con tempo discreto è ergodica è il cosiddetto teorema ergodico di Birkhoff: per ogni funzione f per cui ∫ ∣f∣dμ 〈 ∞ esiste per quasi ogni x il limite ... Leggi Tutto
CATEGORIA: MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – SOTTOINSIEME DI MISURA NULLA – DISTRIBUZIONE DI PROBABILITÀ – SISTEMI DI EQUAZIONI LINEARI
Mostra altri risultati Nascondi altri risultati su Sistemi dinamici (3)
Mostra Tutti

Numeri, teoria dei

Enciclopedia del Novecento (1979)

Numeri, teoria dei LLarry Joel Goldstein di Larry Joel Goldstein SOMMARIO: 1. Introduzione: a) argomenti fondamentali; b) la teoria dei numeri nel XVII e XVIII secolo; c) Gauss. □ 2. Teoria algebrica [...] sia λ>0, k>0, γ=±1. Allora una funzione f(z), olomorfa su ???OUT-H???, si dice ‛forma automorfa di segnatura {λ, k, γ}' se: a) f(z+λ)=f(z); c) f ha uno sviluppo di Fourier della forma: d) ∣f(u+iv)∣≤cv-k (v→0), per delle costanti assolute, c ... Leggi Tutto
TAGS: TEOREMA FONDAMENTALE DELL'ARITMETICA – LEGGE DI RECIPROCITÀ QUADRATICA – DOMINIO A FATTORIZZAZIONE UNICA – COSTRUIBILE CON RIGA E COMPASSO – TEOREMA DI KRONECKER-WEBER

L'Ottocento: matematica. Analisi complessa

Storia della Scienza (2003)

L'Ottocento: matematica. Analisi complessa Jeremy Gray Analisi complessa Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] 'monogena' (il termine moderno è analitica od olomorfa) una funzione con tale proprietà. Nello stesso articolo enunciò un a in cui la funzione f(z) è infinita ma in cui il prodotto (z−a)mf(z) è finito. Il comportamento di funzioni come e1/z nell' ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Operatori, teoria degli

Enciclopedia del Novecento II Supplemento (1998)

Operatori, teoria degli Helmut H. Schaefer e Manfred P. Wolff Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] su una classe essenzialmente più grande di funzioni. Consideriamo (al solito T ∈ L (E), E ≠ {0}) la classe F (T) di tutte le funzioni localmente olomorfe su σ (T), f : D ( f ) → C; due tali funzioni f, g saranno considerate come equivalenti quando c ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – MOLTIPLICAZIONE FRA MATRICI – TEOREMA DI CAYLEY-HAMILTON

La grande scienza. Teoria dei numeri

Storia della Scienza (2003)

La grande scienza. Teoria dei numeri Anatolij A. Karatsuba Teoria dei numeri La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] risposta a uno dei problemi posti da Hilbert nel 1900. Nel 1975 S.M. Voronin dimostrò il teorema 'sull'universalità' di ζ(s): se f(s) è una funzione olomorfa nel cerchio K di raggio r, ∣3/4−s∣≤r⟨1/4, f(s)≠0, per ogni ε>0 esiste t tale che ∣ζ(s+it ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

Numeri, teoria dei

Enciclopedia della Scienza e della Tecnica (2007)

Numeri, teoria dei Larry Joel Goldstein La teoria dei numeri è il settore della matematica dedicato allo studio delle proprietà degli interi, cioè dell'insieme ℤ costituito dai numeri …, −4, −3, −2, [...] seguente: [37] formula. Una forma automorfa di peso k per Γ è una funzione f(z) definita per z in ℍ tale che: a b a) f(γ(z))(cz+d)−k=f(z), γ=() c d b) f(z) è olomorfa in ℍ; c) f(z) ha uno sviluppo di Fourier del tipo [38] formula. Le forme ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DELL'ARITMETICA – DOMINIO A FATTORIZZAZIONE UNICA – LEGGE DI RECIPROCITÀ QUADRATICA – CHARLES DE LA VALLÉE POUSSIN – TEOREMA DI KRONECKER-WEBER
Mostra altri risultati Nascondi altri risultati su Numeri, teoria dei (4)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento Jeremy Gray Problemi di analisi complessa alla fine dell'Ottocento La teoria generale [...] che il numero degli zeri meno il numero dei poli della funzione f(z) all'interno di una curva chiusa coincide con l' Cauchy, servendosi della quale si dimostra che una funzione olomorfa è infinitamente differenziabile e ammette un'espansione in serie ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Laplace, trasformazione di

Enciclopedia della Matematica (2013)

Laplace, trasformazione di Laplace, trasformazione di utile strumento per lo studio di equazioni differenziali lineari, sia ordinarie che alle derivate parziali, perché permette di trasformare problemi [...] Laplace di ƒ(t). Tale funzione si designa spesso col simbolo F(s) = ℒ(ƒ(t), s) o semplicemente ℒ(ƒ(t)) dove ℒ indica la trasformazione di Laplace. Si dimostra che F(s) risulta una funzione analitica della variabile complessa s, olomorfa nel dominio ... Leggi Tutto
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONE DIFFERENZIALE LINEARE – SISTEMI DI EQUAZIONI LINEARI – ASSOLUTAMENTE INTEGRABILE

trasformata di Laplace

Enciclopedia della Scienza e della Tecnica (2008)

trasformata di Laplace Luca Tomassini Nozione introdotta da Pierre-Simon de Laplace nel suo famoso Théorie analitique des probabilités (1812) e da lui utilizzata per risolvere equazioni differenziali [...] , L(s) è una funzione olomorfa e si ha (analogamente al caso della trasformata di Fourier) [4] formula, dove L(k)(s) è la derivata k-esima di L(s). Anche la trasformata di Laplace può essere definita per funzioni φ(t): ℝn+→ℂ. Se la funzione f(t) è ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: FUNZIONE A VARIAZIONE LIMITATA – INTEGRABILE SECONDO LEBESGUE – PIERRE-SIMON DE LAPLACE – EQUAZIONI DIFFERENZIALI – ASCISSA DI CONVERGENZA
Mostra altri risultati Nascondi altri risultati su trasformata di Laplace (2)
Mostra Tutti

Laurent, serie di

Enciclopedia della Matematica (2013)

Laurent, serie di Laurent, serie di serie di potenze positive o negative di z − z0 in cui si sviluppa una funzione analitica ƒ(z), olomorfa in una corona circolare Ω di centro z0. L’espressione della [...] è: A essa si dà il nome di sviluppo in serie di Laurent della funzione ƒ(z). I coefficienti cn si ottengono, per ogni n ∈ Z, dalle punto stesso, la serie si chiama componente olomorfa di ƒ in z0, mentre si chiama componente caratteristica ... Leggi Tutto
TAGS: SINGOLARITÀ ESSENZIALE – FUNZIONE ANALITICA – SERIE DI POTENZE – SERIE DI LAURENT – POLINOMIO
1 2 3 4 5 6 7
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali