• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
64 risultati
Tutti i risultati [64]
Matematica [41]
Analisi matematica [20]
Algebra [12]
Geometria [7]
Fisica [8]
Fisica matematica [7]
Storia della matematica [6]
Storia della fisica [4]
Filosofia [4]
Biologia [4]

funzione olomorfa, polo di una

Enciclopedia della Matematica (2017)

funzione olomorfa, polo di una funzione olomorfa, polo di una si chiama polo (di ordine n) di una funzione olomorfa monodroma ogni punto in cui la funzione è infinita (di ordine n). Per esempio, la funzione [...] ƒ(z) = (z7 + 1)/(z 3 + z 2) ammette tre poli: uno di ordine 2 in z = 0, uno di ordine 1 in z = −1 e uno di ordine 4 in z = ∞. ... Leggi Tutto

derivata

Enciclopedia on line

Concetto fondamentale nell’analisi matematica e nelle sue applicazioni che esprime, date due grandezze l’una funzione dell’altra (per es., in fisica, lo spazio percorso e il tempo impiegato a percorrerlo, [...] di variabile complessa Si definisce sostanzialmente come per le funzioni di variabile reale. Se z è la variabile complessa, la funzione f(z) si dice derivabile in senso complesso (anche olomorfa o monogena o analitica) nel punto z0 interno al ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: FUNZIONE DI VARIABILE COMPLESSA – TEORIA QUANTISTICA DEI CAMPI – FUNZIONI DI VARIABILE REALE – PUNTO DI ACCUMULAZIONE – GRAFICO DELLA FUNZIONE
Mostra altri risultati Nascondi altri risultati su derivata (4)
Mostra Tutti

logaritmo

Enciclopedia on line

Si definisce l. di un numero reale positivo x rispetto alla base a (reale, positiva e diversa da 1) l’esponente y che bisogna attribuire alla base a per ottenere il numero x; il l. di x nella base a si [...] e anzi olomorfa, con derivata 1/z (➔ serie). Derivate, funzioni, scale, serie logaritmiche Derivata logaritmica di una funzione f(x) è la derivata del l. di f(x), ed è uguale al rapporto tra la derivata e la funzione: Dlog f(x)=f′(x)/f(x). Funzione ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: CALCOLATORI ELETTRONICI – EQUAZIONE ESPONENZIALE – FUNZIONE ESPONENZIALE – ELEVAMENTO A POTENZA – FUNZIONE LOGARITMICA
Mostra altri risultati Nascondi altri risultati su logaritmo (3)
Mostra Tutti

ANALISI MATEMATICA

Enciclopedia Italiana - IX Appendice (2015)

È molto difficile definire con precisione cos’è l’analisi matematica. Se si pensa all’algebra come al ramo della matematica consacrata al calcolo letterale e alle strutture nell’ambito delle quali tale [...] (JPEG2000). L’analisi delle funzioni f=f(z) a valori complessi di una variabile complessa z derivabili nel senso che il loro tasso di crescita ammette un limite (complesso) in ogni punto, dette funzioni olomorfe, fa ugualmente intervenire una EDP ... Leggi Tutto
TAGS: PRINCIPIO D’INDETERMINAZIONE DI HEISENBERG – CHARLES JEAN DE LA VALLÉE POUSSIN – LEGGE DI GRAVITAZIONE UNIVERSALE – EQUAZIONI ALLE DERIVATE PARZIALI – SISTEMI DI EQUAZIONI LINEARI
Mostra altri risultati Nascondi altri risultati su ANALISI MATEMATICA (4)
Mostra Tutti

VARIETÀ

Enciclopedia Italiana - III Appendice (1961)

VARIETÀ (App. II, 11, p. 1089) Edoardo Vesentini In geometria il termine v. è comunemente inteso in due differenti accezioni: v. algebrica (per la quale rinviamo alla voce geometria: Geometria algebrica, [...] B dello spazio vettoriale complesso Cn a n dimensioni, e siano tali inoltre che ogni funzione f di &scr;FC(X) coincida su Ux con una funzione F(f1, ..., fn) olomorfa in B; n dicesi la dimensione complessa di X. Scindendo la parte reale ed il ... Leggi Tutto
TAGS: DETERMINANTE JACOBIANO – METRICA RIEMANNIANA – FORMA DIFFERENZIALE – SPAZIO VETTORIALE – SPAZIO PROIETTIVO
Mostra altri risultati Nascondi altri risultati su VARIETÀ (6)
Mostra Tutti

Geometria algebrica

Enciclopedia del Novecento II Supplemento (1998)

GEOMETRIA ALGEBRICA Ciro Ciliberto Igor R. Shafarevich Lo sviluppo delle idee di Ciro Ciliberto Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] , cioè di forme differenziali che, in coordinate locali (z1, z2) sulla superficie, si scrivono come f (z1, z2) dz1 ⋀ dz2, con f (z1, z2) funzione olomorfa di (z1, z2). Noether (1869) legava poi questo concetto a quello di ‛superfici aggiunte' a ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – ACCADEMIA NAZIONALE DELLE SCIENZE DETTA DEI XL – EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – SCUOLA ITALIANA DI GEOMETRIA ALGEBRICA – CARATTERISTICA DI EULERO-POINCARÉ
Mostra altri risultati Nascondi altri risultati su Geometria algebrica (2)
Mostra Tutti

Geometria

Enciclopedia della Scienza e della Tecnica (2007)

Geometria Edoardo Vesentini Nel tracciare i lineamenti essenziali di una storia della matematica, Federigo Enriques osservava nel 1938: "A chi raffronti gli sviluppi che i diversi rami delle matematiche [...] Sull'unione ℳ=∪x∈Aℳx è possibile definire una topologia in modo tale che, se U è un aperto di A e se f e g sono funzioni olomorfe su U tali che g non si annulli identicamente su nessuna delle componenti connesse di U, i quozienti fx/gx descrivono un ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: ACCADEMIA NAZIONALE DEI LINCEI – SPAZIO TOPOLOGICO COMPATTO – GEOMETRIA DIFFERENZIALE – ALEXANDER GROTHENDIECK – FRIEDRICH HIRZEBRUCH
Mostra altri risultati Nascondi altri risultati su Geometria (13)
Mostra Tutti

forma modulare

Enciclopedia della Matematica (2017)

forma modulare forma modulare in analisi complessa, particolare funzione olomorfa che così si definisce. Sia M2(Z) il gruppo delle matrici quadrate di ordine 2 a coefficienti interi aventi determinante [...] a Γ è una funzione ƒ: H → C a valori nel campo complesso, dove H è il semipiano superiore del piano di Argand-Gauss (numeri complessi con parte immaginaria positiva), che soddisfa le condizioni seguenti: • ƒ è olomorfa su H; • ƒ soddisfa l’equazione ... Leggi Tutto
TAGS: PIANO DI ARGAND-GAUSS – EQUAZIONE FUNZIONALE – FUNZIONE OLOMORFA – ANALISI COMPLESSA – SERIE DI FOURIER
Mostra altri risultati Nascondi altri risultati su forma modulare (1)
Mostra Tutti

Gruppi

Enciclopedia del Novecento (1978)

Gruppi GGeorge W. Mackey di George W. Mackey SOMMARIO: 1. Introduzione e storia. □ 2. Concetti fondamentali. □ 3. Anelli di endomorfismi e gruppi lineari. □ 4. La struttura dei gruppi finiti. □ 5. Gruppi [...] peso k per un sottogruppo discreto Γ sono esattamente le funzioni f lasciate invariate da tutte le Wkγ con γ in Γ. Quelle funzioni olomorfe f per le quali ∫ ∫ ∣ f(x + iy) ∣2 y2k-2 dxdy 〈 ∞ costituiscono uno spazio di Hilbert ℋk che è Wkx invariante ... Leggi Tutto
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – CONDIZIONI NECESSARIE E SUFFICIENTI – TEOREMA FONDAMENTALE DELL'ALGEBRA – PRINCIPIO DI ESCLUSIONE DI PAULI – LEGGE DI RECIPROCITÀ QUADRATICA

La grande scienza. Cronologia scientifica: 1961-1970

Storia della Scienza (2003)

La grande scienza. Cronologia scientifica: 1961-1970 1961-1970 1961 Famiglia universale. Il giapponese Masatake Kuranishi mostra che esiste sempre un certo tipo di famiglia olomorfa di strutture complesse [...] matematico americano Richard S. Palais formalizza la condizione di compattezza di Palais e Smale. Tale condizione vale per una funzione f:X→ℝ di classe almeno C2 se le successioni che annullano il gradiente sono compatte. Quando questa condizione è ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – ANTROPOLOGIA FISICA – STORIA DELLA BIOLOGIA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA
1 2 3 4 5 6 7
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali