• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
4 risultati
Tutti i risultati [46]
Fisica [4]
Matematica [31]
Analisi matematica [16]
Algebra [5]
Temi generali [3]
Geometria [4]
Fisica matematica [3]
Biologia [3]
Storia della matematica [3]
Diritto [3]

Materia, stabilita della

Enciclopedia del Novecento II Supplemento (1998)

Materia, stabilità della Walter Thirring sommario: 1. Introduzione storica. 2. Argomenti euristici. 3. La dimostrazione. 4. Conseguenze. a) Stabilità relativistica. b) L'esistenza di dinamiche locali. [...] valori permessi dell'energia E fossero quelli per i quali l'equazione ha una soluzione tale che la ‛funzione d'onda' ψ (x) è una funzione a quadrato sommabile ∫ dx ∣ψ (x)∣2 〈 ∞. Questa condizione fissò l'energia minima di un atomo d'idrogeno che ... Leggi Tutto
CATEGORIA: RELATIVITA E GRAVITAZIONE – TERMODINAMICA E TERMOLOGIA
TAGS: DISTRIBUZIONE DI PROBABILITÀ – ELETTRODINAMICA QUANTISTICA – RADIAZIONE ELETTROMAGNETICA – INTERAZIONE ELETTROSTATICA – INSTABILITÀ GRAVITAZIONALE

serie

Dizionario delle Scienze Fisiche (1996)

serie sèrie [Der. del lat. series, da serere "intrecciare"] [LSF] Successione continua e ordinata di enti, concreti o astratti, dello stesso genere, distinta in s. aperta oppure chiusa a seconda che, [...] alcalino-potassica, ecc. ◆ [ANM] S. A-convergente e A-sommabile: v. ANALISI ARMONICA: I 126 c. ◆ [ANM] S. ◆ [ANM] S. uniformemente convergente: in un intervallo (a,b) una s. di funzioni tale che, per ogni ε>0 esiste un indice ν tale che, per n≥ν ... Leggi Tutto
CATEGORIA: TEMI GENERALI – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – FISICA TECNICA – GEOFISICA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – ELETTRONICA
Mostra altri risultati Nascondi altri risultati su serie (6)
Mostra Tutti

Borel Felix-Edouard-Emile

Dizionario delle Scienze Fisiche (1996)

Borel Felix-Edouard-Emile Borel ⟨borèl⟩ Félix-Edouard-Émile [STF] (Saint-Affrique, Aveyron, 1871 - Parigi 1956) Prof. di matematica nell'univ. di Parigi (1909); socio straniero dei Lincei (1918). ◆ [ANM] [...] numerabile e di complemento. ◆ [ANM] Funzione e somma di B.: v. funzioni di variabile complessa: II 780 c. ◆ di B.-Lebesgue in R2: v. misura e integrazione: IV 5 c. ◆ [ANM] Serie sommabile secondo B. e somma di B.: v. sviluppi in serie: VI 65 b, 64 f ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: TEORIA DELLA MISURA – MATEMATICA – NUMERABILE – AVEYRON – PARIGI
Mostra altri risultati Nascondi altri risultati su Borel Felix-Edouard-Emile (1)
Mostra Tutti

Plancherel Michel

Dizionario delle Scienze Fisiche (1996)

Plancherel Michel Plancherel 〈planšerél〉 Michel [STF] (Bussy, Friburgo, 1885 - Zurigo 1967) Prof. di matematica nel politecnico di Zurigo (1920). ◆ [ANM] Formula di P.: riguarda la trasformata di Fourier: [...] v. analisi armonica: I 127 c, 129 e. ◆ [ANM] Teorema di P.: per ogni funzione f a quadrato sommabile su tutta la retta reale la funzione fˆa(x)=∫a-a f(y) exp(-ixy)dy converge nella norma L₂(-∞,+∞), per a→∞, a una funzione fˆ(x). ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ANALISI MATEMATICA
Vocabolario
sommàbile
sommabile sommàbile agg. [der. di sommare]. – Che si può sommare: non sono s. grandezze eterogenee. In analisi matematica: funzione s., di cui esiste la somma integrale, e quindi sinon. di funzione integrabile; serie s., sinon. di serie convergente.
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali