• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
22 risultati
Tutti i risultati [54]
Matematica [22]
Fisica [6]
Algebra [6]
Temi generali [5]
Analisi matematica [5]
Fisica matematica [5]
Geometria [3]
Storia della matematica [4]
Ingegneria [4]
Informatica [3]

Geometria differenziale

Enciclopedia del Novecento II Supplemento (1998)

Geometria differenziale Simon M. Salamon SOMMARIO: 1. Introduzione: le origini.  2. Proprietà delle superfici.  3. Studio della curvatura gaussiana.  4. Dimensioni superiori.  5. Varietà e topologia.  [...] di varietà definite da tensori analoghi a g. Tra queste ricordiamo le varietà quasi simplettiche, determinate da una forma bilineare ω antisimmetrica non degenere su ogni spazio tangente, e le varietà quasi complesse, definite da un isomorfismo J ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – GILLES PERSONNE DE ROBERVAL – SPAZIO DELLE CONFIGURAZIONI – POSTULATO DELLE PARALLELE – EQUAZIONE DI QUARTO GRADO
Mostra altri risultati Nascondi altri risultati su Geometria differenziale (3)
Mostra Tutti

Algebra

Enciclopedia del Novecento (1975)

Algebra Irving Kaplansky sommario: 1. Introduzione. 2. Gruppi in generale. 3. Gruppi semplici finiti. 4. Gruppi infiniti. 5. Gruppi liberi. 6. Gruppi abeliani infiniti. 7. Anelli in generale. 8. Corpi. [...] del corpo è diversa da 2. Per semplicità, ignoriamo il caso in cui la caratteristica è 2, e definiamo una forma bilineare simmetrica, che scriviamo con le parentesi (, ), in uno spazio vettoriale V su un corpo k. Si presuppone la linearità di ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DELL'ALGEBRA – COSTRUZIONI CON RIGA E COMPASSO – DOMINIO A FATTORIZZAZIONE UNICA – INSIEME PARZIALMENTE ORDINATO – RAPPRESENTAZIONI IRRIDUCIBILI
Mostra altri risultati Nascondi altri risultati su Algebra (9)
Mostra Tutti

La grande scienza. Cronologia scientifica: 1961-1970

Storia della Scienza (2003)

La grande scienza. Cronologia scientifica: 1961-1970 1961-1970 1961 Famiglia universale. Il giapponese Masatake Kuranishi mostra che esiste sempre un certo tipo di famiglia olomorfa di strutture complesse [...] Formes bilinéaires sur les ensembles convexes la sua famosa diseguaglianza variazionale, dimostrando che ‒ dato uno spazio di Hilbert reale V e una forma bilineare continua su di esso a(u,v), tale che per un dato α>0 e per ogni v∈V soddisfi a(v ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – ANTROPOLOGIA FISICA – STORIA DELLA BIOLOGIA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA

Operatori, teoria degli

Enciclopedia del Novecento II Supplemento (1998)

Operatori, teoria degli Helmut H. Schaefer e Manfred P. Wolff Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] spettro di T∣PE è costituito dall'unico punto λ0. Sia E uno spazio di Banach, E′ il suo spazio duale; allora, relativamente alla forma bilineare 〈 ϕ, x> = ϕ (x) (x ∈ E, ϕ ∈ E′) la coppia E, E′ è detta ‛sistema duale (canonico)'. Come nel caso di ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – MOLTIPLICAZIONE FRA MATRICI – TEOREMA DI CAYLEY-HAMILTON

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale Angus E. Taylor Le origini dell'analisi funzionale L'analisi funzionale acquista una precisa identità nel [...] aij=aji; prese comunque in considerazione anche il caso complesso in cui aji è il coniugato di aij (forma simmetrica hermitiana). Imponendo alla forma bilineare una condizione di limitatezza, Hilbert riuscì a elaborare una 'teoria spettrale' delle ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. L'economia matematica 1870-1950

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. L'economia matematica 1870-1950 Angelo Guerraggio L'economia matematica 1870-1950 Di matematica sociale comincia a parlare Condorcet nella Francia [...] il gioco attraverso un valore atteso. La sua soluzione è ricondotta alla ricerca di un punto di sella di una forma bilineare; qui dà, per la prima volta, la definizione di quasi-convessità ‒ solitamente attribuita a de Finetti e a Werner Fenchel ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

Convessità

Enciclopedia della Scienza e della Tecnica (2007)

Convessità Arrigo Cellina La convessità è un concetto della matematica elementare; le parole concavo e convesso fanno parte del linguaggio quotidiano. Eppure questo semplice concetto, unito ad altre [...] un caso molto particolare del seguente problema generale. Sono dati uno spazio di Hilbert H, un sottoinsieme convesso e chiuso K di H, una forma bilineare e continua a da H×H in ℝ e infine f, un elemento del duale di H. Si cerca una soluzione u0 del ... Leggi Tutto
CATEGORIA: TEMI GENERALI
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – FUNZIONI A QUADRATO SOMMABILE – SPAZIO LOCALMENTE CONVESSO – CALCOLO DELLE VARIAZIONI – FUNZIONE DIFFERENZIABILE

L'Ottocento: matematica. Calcolo geometrico

Storia della Scienza (2003)

L'Ottocento: matematica. Calcolo geometrico Paolo Freguglia Gert Schubring Calcolo geometrico Uno degli aspetti che hanno caratterizzato lo sviluppo della matematica nell'Ottocento è rappresentato [...] del prodotto vettoriale). Il prodotto interno ha acquisito un significato centrale nell'algebra lineare come prodotto scalare o forma bilineare definita positiva; si ha infatti per un vettore a=(α1,α2,…,αn,): Ironia della sorte, il prodotto esterno ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

BATTAGLINI, Giuseppe

Dizionario Biografico degli Italiani (1970)

BATTAGLINI, Giuseppe Nicola Virgopia Nacque a Napoli l'11 genn. 1826. Trascorse la sua prima fanciullezza a Martina Franca (Lecce) nella casa del nonno paterno presso cui fece i primi studi. Ritornato [...] di 2ª classe, ibid., XX(1882), pp. 230-248: si tratta della proiettività definita da un connesso (1, 1), cioè da una forma bilineare nelle coordinate dei punti di un piano e delle rette di un altro piano. Il B. sulla scorta di precedenti sue ricerche ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: OSSERVATORIO ASTRONOMICO DI CAPODIMONTE – ACCADEMIA DELLE SCIENZE DI TORINO – ERNESTO CAPOCCI DI BELMONTE – EQUAZIONE DIFFERENZIALE – ORDINE CIVILE DI SAVOIA
Mostra altri risultati Nascondi altri risultati su BATTAGLINI, Giuseppe (2)
Mostra Tutti

TENSORIALE, ALGEBRA e ANALISI

Enciclopedia Italiana - IV Appendice (1981)

TENSORIALE, ALGEBRA e ANALISI Dionigi Galletto Il calcolo t., sinonimo di calcolo differenziale assoluto (v. differenziale assoluto, calcolo, XII, p. 796; tensore, XXXIII, p. 497), i cui fondamenti [...] JMTJ-1, le quali prendono il nome di "matrici simplettiche". Una varietà differenziabile Vn si dice "simplettica" se è munita di una forma bilineare emisimmetrica definita su tutta Vn e a valori in R, di classe Cr-1 (o C∞ o Cw), non degenere e avente ... Leggi Tutto
1 2 3
Vocabolario
emisimmètrico
emisimmetrico emisimmètrico agg. [comp. di emi- e simmetrico] (pl. m. -ci). – In matematica, detto di una forma bilineare se cambia segno al cambiare di posto delle due variabili; un operatore si dice emisimmetrico se la forma bilineare ad...
segmentale
segmentale agg. [der. di segmento; nel sign. 2, dall’ingl. segmental]. – 1. non com. Di segmento, relativo a un segmento. 2. In biologia, riferito ai segmenti o metameri in cui è diviso il corpo di molti animali: struttura s.; organi s., gli...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali