congruenza
congruènza [Der. di congruente] [LSF] Corrispondenza fra due o più cose. ◆ [ALG] C. di numeri: relazione fra due numeri relativi interi a e b, tali che la differenza a-b è divisibile per un [...] , 3, 4, ecc. si giustificano appunto in base alla teoria delle congruenze. In questa teoria sono notevoli i due seguenti enunciati: (a) teorema di Eulero: se a è primo con m, allora ap(m)=1 (mod m), essendo p(m) il numero di numeri fra 1 e m che sono ...
Leggi Tutto
Fisico, matematico e filosofo francese (Parigi 1717 - ivi 1783). Amico di Voltaire e Diderot, collaborò all'Enciclopedia, di cui redasse il Discorso preliminare (1751), vero e proprio sommario dell'enciclopedismo [...] va sotto il suo nome. Stabilì inoltre le equazioni cardinali dell'equilibrio di un sistema rigido. Fu tra i primi, con L. Eulero e D. Bernoulli, a occuparsi del moto dei fluidi, della resistenza incontrata da un solido in un fluido (paradosso di d'A ...
Leggi Tutto
genere
gènere [Der. del lat. genus -neris, affine al gr. g✄énos "stirpe"] [LSF] (a) Ogni qualità caratterizzante un ente. (b) Anche, l'insieme degli enti che hanno quella particolare qualità. ◆ [ALG] [...] il numero delle facce, S quello degli spigoli, V quello dei vertici (intuitivamente, p è il numero delle "gallerie" che attraversano il poliedro; per i poliedri ordinari si ha p=0 e la formula precedente si riduce alla formula di Eulero dei poliedri. ...
Leggi Tutto
omogeneità La condizione di ciò che è omogeneo, sia rispetto ad altri enti, sia rispetto alle sue parti, in quanto vi sia identità, similitudine o quanto meno armonia tra gli oggetti o le parti in questione.
economia [...] se la precedente relazione è valida limitatamente ai soli valori positivi di t. Per le funzioni omogenee vale il teorema di Eulero, secondo cui
Talvolta si parla di funzione omogenea rispetto al punto β1, β2, β3, … se essa è omogenea rispetto ...
Leggi Tutto
Hilbert, David
Hilbert ⟨hìlbërt⟩ David [STF] (Königsberg 1862 - Gottinga 1943) Prof. di matematica nell'univ. di Gottinga (1895); socio straniero dei Lincei (1903). ◆ Azione di H.-Einstein: v. gravità [...] risolubile) che le grandezze n0(r), u0(r), b0(r), dette grandezze idrodinamiche, verifichino le equazioni di Eulero compressibili linearizzate della gasdinamica. La sua soluzione può essere espressa in termini di cinque funzioni arbitrarie n1(r), u1 ...
Leggi Tutto
prodotto
prodótto [Part. pass. sostantivato di produrre, der. del lat. producere "portare avanti", comp. di pro- "davanti" e ducere "condurre"] [LSF] Generic., il risultato di qualcosa, spec. di un'attività, [...] Tale nozione si estende anche a funzioni, e in effetti varie funzioni di notevole importanza (per es., la funzione gamma di Eulero e la funzione zeta di Riemann) sono esprimibili come p. infinito: v. funzioni di variabile complessa: II 780 a. ◆ [ANM ...
Leggi Tutto
indicatore
indicatóre [s.m e agg. (f. -trice) Der. del lat. indicator -oris, da indicare, var. di indicere "prescrivere solennemente", comp. di in- e dicere "dire"] [LSF] [MTR] Denomin. di vari strumenti [...] ci si serve per valutare la distanza di ammassi o associazioni lontani: v. distanze in astronomia: II 218 d. ◆ [ALG] I. di Eulero-Gauss: funzione di una variabile positiva intera m che dà il numero dei numeri interi positivi non maggiori di m e primi ...
Leggi Tutto
connessione
connessióne [Der. del lat. connessio -onis, dal lat. connexus (→ connesso) "l'essere connesso, il modo in cui si è connessi"] [ALG] [ANM] Generic., legame di dipendenza fra due o più grandezze [...] rispetto al gruppo dei cicli contornanti. La somma a segni alterni degli ordini di c. delle varie c. si chiama caratteristica di Eulero della varietà. Nel caso di una superficie, l'ordine di c. relativo alla dimensione 1 (l'unico che non sia banale ...
Leggi Tutto
nodo
nòdo [Der. del lat. nodus "intreccio di fili"] [MTR] Unità di misura della velocità tuttora usata nella navigazione marittima e aerea, pari a un miglio nautico internazionale (1852 m) all'ora ed [...] pari (fig. 3.1) oppure dispari (fig. 3.2) il numero dei tratti che concorrono in esso; secondo un teorema di Eulero, perché un complesso possa essere percorso completamente a partire da un n. senza passare due volte per uno stesso tratto occorre e ...
Leggi Tutto
Chimica
Generalità
L’a. chimica si occupa dei metodi che permettono di determinare la composizione chimica di un campione. Genericamente ha il significato di scissione in elementi più piccoli e loro esame, [...] a uno sviluppo in serie di una funzione, in cui compaiono le derivate della funzione stessa; di L. Eulero (1783) che studiò gli integrali multipli, alcuni tipi di equazioni differenziali, facendo applicazioni del calcolo infinitesimale allo studio ...
Leggi Tutto
euleriano
agg. – Relativo al matematico svizzero L. Euler 〈òülër〉 (1707-1783), cognome di solito italianizzato in Eulèro: triangolo sferico e. (o ordinario), ogni triangolo sferico i cui lati sono tutti minori di una semicirconferenza massima;...
indicatore
indicatóre s. m. (f. -trice) [dal lat. tardo indicator -oris]. – 1. Chi indica; più spesso, dispositivo, apparecchio, scritta o altro elemento che indica o segnala qualche cosa: indicatori di direzione, negli autoveicoli, i lampeggiatori...