La civilta islamica: antiche e nuove tradizioni in matematica. La teoria delle parallele
Christian Houzel
La teoria delle parallele
Secondo la def. 23 che Euclide fornisce nel Libro I degli Elementi, [...] che al-Ḫayyām introduce implicitamente: l'equidistanza delle parallele AH ed EG, o BI ed EG. In effetti, in geometria non euclidea i punti H e I non sempre esistono.
Si ottiene dunque un nuovo quadrilatero CDIH. Ribaltandolo rispetto a CD, si otterrà ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1951-1960
1951-1960
1951
Sui gruppi di omotopia e di omologia. In una serie di articoli (Homologie singulière des espaces fibrés) Jean-Pierre Serre fornisce [...] , di D. Montgomery e di L. Zippin viene risolta una parte del V problema di Hilbert: ogni gruppo topologico localmente euclideo è un gruppo di Lie.
Sulle varietà algebriche reali. John F. Nash dimostra che ogni varietà reale compatta è diffeomorfa a ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. Filosofia della matematica
Roshdi Rashed
Filosofia della matematica
Gli storici della filosofia islamica dimostrano un interesse molto [...] . Senza dimostrarlo, per esempio, egli riprende il teorema di Ṯābit ibn Qurra sui numeri amicabili, seguendo il nitido stile euclideo di Ṯābit e, allo stesso modo, riprende anche vari problemi di congruenza: "se sommi i numeri parimenti pari e ...
Leggi Tutto
Scienza indiana: periodo classico. Matematica
Takao Hayashi
Matematica
'Gaṇita' ('matematica')
Prima dell'introduzione e diffusione dell'astrologia oroscopica e dell'astronomia matematica nella società [...] 'equazione y=(ax+c)/b in numeri interi. In uno di essi Mahāvīra, come Āryabhaṭa I e Brahmagupta, arresta l'algoritmo euclideo per la determinazione del massimo comun divisore fra a e b (supposti relativamente primi) in un punto a partire dal quale si ...
Leggi Tutto
Scienza greco-romana. Euclide e la matematica del IV secolo
Reviel Netz
Euclide e la matematica del IV secolo
Sappiamo del IV sec. a.C. più di quanto non sappiamo del V, ma è sempre molto poco. Fra [...] in dubbio, non sono state dimostrate del tutto errate. I dubbi non investono soltanto le date, ma anche lo stesso corpus euclideo. Si è sempre saputo che molte opere che andavano sotto il nome di Euclide erano in realtà dovute ad autori più tardi ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. L'algebra e il suo ruolo unificante
Roshdi Rashed
L'algebra e il suo ruolo unificante
La seconda metà del VII sec. vede il costituirsi [...] 4)=ax. Si determina in questo modo la più grande radice positiva x0, si calcola y0 e si ottiene:
Ricordiamo che, nel linguaggio euclideo sulle rette irrazionali, a+√b è un primo binomio, con a e b razionali, a>√b, √b irrazionale e
razionale, e ...
Leggi Tutto
Il Rinascimento. Le arti matematiche
Eberhard Knobloch
Ivo Schneider
Le arti matematiche
Il concetto di scienze matematiche
di Eberhard Knobloch
Il Rinascimento riprese dal Medioevo il concetto delle [...] (composto da sei quadrati e da otto triangoli) e l'icosidodecaedro (venti triangoli e dodici pentagoni). Nel 1559 le edizioni euclidee precedenti a quella di de Foix furono sottoposte a un'analisi critica da Jean Borrel (1492 ca.-1564 o 1572), il ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. Gli archimedei e i problemi infinitesimali
Roshdi Rashed
Gli archimedei e i problemi infinitesimali
La storia della geometria infinitesimale, [...] nella sfera. (ibidem, p. 402)
Deduce allora che v=(1/3)sr. Si osserva già che qui non opta per la definizione euclidea dell'angolo solido. Prende infatti le mosse da un poliedro regolare inscritto in una sfera. A ogni faccia del poliedro associa una ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento
Jeremy Gray
Problemi di analisi complessa alla fine dell'Ottocento
La teoria generale [...] di gruppi opportuni in modo da ricoprire, di solito, un disco. Inoltre questo disco aveva una struttura geometrica non euclidea invariante per l'azione dei gruppi e quindi la corrispondente superficie di Riemann era localmente uguale a una porzione ...
Leggi Tutto
La Rivoluzione scientifica: i domini della conoscenza. La nascita della matematica moderna: 1600-1700
Enrico Giusti
La nascita della matematica moderna: 1600-1700
Costringere un movimento storico nell'ambito [...] è cartesiano. Se credesse alle monadi, si direbbe: è leibniziano. Ma di chi conosce gli Elementi di Euclide non si dice: è euclideo; né di chi sa con Galileo qual è la legge con cui i corpi cadono, che è galileiano. Così in Inghilterra, quelli che ...
Leggi Tutto
euclideo
euclidèo (ant. euclìdico) agg. – Relativo al matematico greco Euclide, vissuto intorno al 300 a. C.; in partic., di ente geometrico, o meglio di un sistema ipotetico-deduttivo, soddisfacente i postulati di Euclide: geometria e., v....
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...