• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
lingua italiana
185 risultati
Tutti i risultati [455]
Matematica [185]
Fisica [85]
Algebra [63]
Fisica matematica [61]
Analisi matematica [41]
Temi generali [36]
Geometria [36]
Storia della matematica [39]
Biografie [36]
Storia della fisica [28]

dominio

Dizionario delle Scienze Fisiche (1996)

dominio domìnio [Der. del lat. dominium, da dominus "padrone"] [LSF] (a) L'esercitare una determinante influenza. (b) Una definita regione dello spazio in cui si manifesta un determinato fenomeno. (c) [...] chiuso, ogni punto del quale sia punto di accumulazione di punti interni e pertanto insieme perfetto; per es., nel piano euclideo, un d. rettangolare (o circolare) chiuso è costituito da tutti i punti di un rettangolo (o di un cerchio), contorno ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA DEI SOLIDI – FISICA MATEMATICA – RELATIVITA E GRAVITAZIONE – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA

TOPOLOGIA

Enciclopedia Italiana - IV Appendice (1981)

TOPOLOGIA (v. analysis situs, I, p. 87; topologia astratta, App. II, 11, p. 1004; topologia, App. III, 11, p. 960) Santuzza Baldassarri Ghezzo La t. oggi è una delle discipline fondamentali della matematica; [...] Questa categoria contiene gran parte degli spazi importanti in t.; fra gli altri contiene gli spazi localmente compatti (e quindi gli spazi euclidei): uno spazio X è detto "localmente compatto" se per ogni x ∈ X esiste un intorno Ux di x tale che Ūx ... Leggi Tutto
TAGS: RELAZIONE DI EQUIVALENZA – TEORIA DELLE CATEGORIE – VARIETÀ TOPOLOGICHE – RICOPRIMENTO APERTO – RELAZIONE D'ORDINE
Mostra altri risultati Nascondi altri risultati su TOPOLOGIA (6)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. La teoria della misura

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La teoria della misura Maurice Sion La teoria della misura Con la nozione matematica di misura si vogliono analizzare concetti che si riferiscono [...] differenziali e in geometria differenziale nel caso in cui lo spazio di Banach ha dimensione finita, cioè è uno spazio euclideo. Queste misure sorgono, per esempio, nel contesto del moto di una particella sotto l'influenza di un campo di forze ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

ortogonale

Enciclopedia on line

In geometria elementare si dice di due enti che formano tra loro un angolo retto. Due rette r, s del piano si dicono o. (o perpendicolari) se si intersecano formando quattro angoli retti (fig. 1 A); una [...] da n(n−1)/2 parametri: per n≥3 non è abeliano. Da un punto di vista geometrico On rappresenta le rotazioni dello spazio euclideo n-dimensionale En attorno a un punto di En. Si indica poi con O+n il sottogruppo di On costituito dalle sole rotazioni ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: PRODOTTO RIGHE PER COLONNE – MATRICI QUADRATE – SPAZIO EUCLIDEO – SPAZI TANGENTI – ORTOGONALITÀ
Mostra altri risultati Nascondi altri risultati su ortogonale (4)
Mostra Tutti

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica Umberto Bottazzini Filosofia e pratica matematica Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] verità, è materia di convenzioni e di comodo. E le esperienze con i corpi solidi ci hanno portato a "scegliere il gruppo euclideo non come il solo vero, ma come il più comodo". Insiemi Nello stesso anno in cui Klein scrive il suo Programma, appaiono ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

tensore

Enciclopedia on line

Anatomia Muscolo volontario o involontario che ha la funzione di tendere un organo o una formazione anatomica: t. del palato, contrae il palato molle; t. del tarso, nell’orbita, comprime i punti lacrimali [...] di coordinate ortogonali, nel quale la metrica viene ad assumere la forma: ds2=grr(dxr)2, grs=0 per r≠s Una varietà euclidea è detta anche varietà piatta. Una varietà che non sia piatta si suol dire che possiede una curvatura. Per stabilire se una ... Leggi Tutto
CATEGORIA: TEMI GENERALI
TAGS: CAMBIAMENTO DI COORDINATE – CORRISPONDENZA BIUNIVOCA – VARIETÀ DIFFERENZIABILE – TEORIA DELLA RELATIVITÀ – EQUAZIONI DIFFERENZIALI
Mostra altri risultati Nascondi altri risultati su tensore (4)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale Angus E. Taylor Le origini dell'analisi funzionale L'analisi funzionale acquista una precisa identità nel [...] di Heine-Borel afferma che se F è un qualsiasi ricoprimento aperto di un insieme chiuso e limitato S in uno spazio euclideo, esiste una sottofamiglia finita di F che è un ricoprimento aperto di S. Vale inoltre il seguente teorema: in uno spazio ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

FAIFOFER, Aureliano

Dizionario Biografico degli Italiani (1994)

FAIFOFER, Aureliano Luca Dell'Aglio Nacque a Borgo Valsugana, in provincia di Trento, il 4 ag. 1843, da Giorgio e Celeste Sordo. Compì gli studi liceali e universitari a Padova, ove si laureò in matematica, [...] che vide tra i propri sostenitori L. Cremona, E. Betti e F. Brioschi, prevedeva un deciso ritorno al testo euclideo, rispetto all'impostazione di stampo aritmetico sviluppata, negli anni della Rivoluzione francese, da A.-M. Legendre, che aveva avuto ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: GEOMETRIA DESCRITTIVA – RIVOLUZIONE FRANCESE – PROVINCIA DI TRENTO – GUIDO CASTELNUOVO – TEORIA DEI NUMERI

gruppo di Lie

Enciclopedia della Scienza e della Tecnica (2008)

gruppo di Lie Luca Tomassini Un gruppo G sul quale sia definita una struttura di varietà analitica tale che la mappa μ:(x,y)→xy−1 dal prodotto diretto G×G in G stesso sia analitica. In altre parole, [...] del gruppo lineare generale GL(n,ℝ) sul campo dei numeri reali ℝ e i suoi sottogruppi chiusi nella topologia euclidea naturale. Non a caso, tali gruppi furono originariamente introdotti da Sophus Lie come gruppi di trasformazioni locali dello spazio ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: SPAZIO VETTORIALE – VARIETÀ ANALITICA – CAMPO VETTORIALE – SPAZIO EUCLIDEO – CAMPO COMPLESSO
Mostra altri risultati Nascondi altri risultati su gruppo di Lie (1)
Mostra Tutti

Lobačevskij, Nikolaj Ivanovič

Enciclopedia on line

Matematico (Makar´ev, Nižnij Novgorod, 1792 - Kazan´ 1856). Insieme all'ungherese J. Bolyai (1802-1860), L. è il creatore della geometria non euclidea nota come geometria iperbolica. Si devono a L. importanti [...] tradizionalisti e con i filosofi idealisti, che, sulla traccia di I. Kant, affermavano il carattere a priori dello spazio euclideo. L., nella sua memoria O načalach geometrii ("Sui principî della geometria", 1829), e nei suoi successivi lavori, fino ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: GEOMETRIA EUCLIDEA – CALCOLO INTEGRALE – NIŽNIJ NOVGOROD – SPAZIO EUCLIDEO – SERIE INFINITE
Mostra altri risultati Nascondi altri risultati su Lobačevskij, Nikolaj Ivanovič (2)
Mostra Tutti
1 2 3 4 5 6 7 8 ... 19
Vocabolario
euclidèo
euclideo euclidèo (ant. euclìdico) agg. – Relativo al matematico greco Euclide, vissuto intorno al 300 a. C.; in partic., di ente geometrico, o meglio di un sistema ipotetico-deduttivo, soddisfacente i postulati di Euclide: geometria e., v....
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali