Fisica
C. libero medio molecolare In teoria cinetica dei gas, il tratto λ percorso in media da una molecola tra due urti successivi, cioè il rapporto tra la velocità media e il numero di urti che essa [...] insieme di punti di un complesso topologico, che si possa porre in corrispondenza univoca e continua con un segmento euclideo; esso corrisponde al concetto intuitivo di linea tracciabile con un solo tratto di matita (non escludendo sovrapposizioni o ...
Leggi Tutto
Bolzano Bernhard
Bolzano 〈bolzàano〉 Bernhard [STF] (Praga 1781 - ivi 1848) Sacerdote, prof. (1805) di storia delle religioni nell'univ. di Praga, grande cultore di matematica. ◆ [ANM] Teorema di B.: [...] deve annullarsi per almeno un valore compreso fra a e b. ◆ [ANM] Teorema di B.-Weierstrass: in uno spazio euclideo finito-dimensionale, ogni insieme chiuso e limitato che contenga infiniti punti ammette almeno un punto di accumulazione: v. equazioni ...
Leggi Tutto
La grande scienza. Geometria non commutativa
Alain Connes
Geometria non commutativa
Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] in seguito. L'usuale geometria è solo un caso particolare di questa nuova teoria, così come le geometrie euclidea e non euclidea sono casi particolari della geometria riemanniana. Molti dei concetti più familiari continuano a sussistere, ma con un ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. I fondamenti della geometria
Umberto Bottazzini
I fondamenti della geometria
Verso la metà del XIX sec. Georg Friedrich Bernhard Riemann (1826-1866) [...] fondamenti che cambia i temi all'ordine del giorno nell'agenda dei geometri: è la questione dei fondamenti della geometria euclidea a essere posta con forza in primo piano, come aveva intravisto Pieri per primo. Viene meno l'interesse a minimizzare ...
Leggi Tutto
Matematico nederlandese (Rotterdam 1920 - Heteren, Paesi Bassi, 1994). Prof. all'univ. di Amsterdam (dal 1962), direttore (dal 1971) dell'Institut des hautes études scientifiques di Bures-sur-Yvette. Apportò [...] e a varie applicazioni alle scienze sperimentali. Noto anche per aver dimostrato il teorema che porta il suo nome e contribuito alla soluzione del teorema di Nash inserito in uno spazio euclideo. Tra le opere: Linear algebra and geometry (1962). ...
Leggi Tutto
Fisica
Per il nucleo esotico ➔ esòtico, nùcleo.
Geologia
In geotettonica, si dice esotico un blocco o lembo arealmente molto limitato di rocce alloctone, inglobato entro terreni litologicamente diversi [...] diffeomorfa a essa. Il termine esotico passò poi a denominare varietà omeomorfe a una data varietà modello, ma non diffeomorfe a essa. In particolare è stata dimostrata l’esistenza di infinite varietà esotico dello spazio euclideo quadridimensionale. ...
Leggi Tutto
FRATTALI
Luigi Accardi
Nicola Rosato
Il termine ''frattale'' è stato introdotto da B. Mandelbrot nel saggio Les objects fractals (1975) per denotare una vasta classe di modelli matematici i quali, [...] per i quali la dimensione di omotetia è definita è la famiglia delle curve di tipo von Koch. Una curva C nello spazio euclideo bidimensionale è detta una ''curva di tipo von Koch finita'' se:
− essa è connessa e orientata
− essa è contenuta in un ...
Leggi Tutto
L'Eta dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele
Peter Schreiber
Geometria analitica, delle curve e delle superfici. Il problema delle parallele
A [...] (fig. 8). Anche qui si dimostra che l'ipotesi che l'angolo α sia ottuso è incompatibile con gli altri assiomi euclidei, mentre è soddisfatta sulla sfera, e che l'ipotesi che α sia retto è equivalente al postulato delle parallele. Anche Lambert ...
Leggi Tutto
vettoriale
vettoriale [agg. Der. di vettore "inerente a vettori"] [ANM] Analisi, o calcolo, v.: la parte della matematica che s'occupa degli algoritmi con i quali si opera sui vettori (a questi si applicano, [...] quando (v₁, v₂)=0, di base ortonormale, ecc. ◆ [ALG] Spazio v. di omologia: v. forme differenziali: II 687 f. ◆ [ALG] Spazio v. euclideo: uno spazio v. in cui, oltre alla somma dei vettori e al prodotto dei vettori per gli elementi del campo con il ...
Leggi Tutto
In statistica, procedimento per ottenere una funzione di distribuzione che sia una media pesata di un dato gruppo di funzioni di distribuzione. Il caso di distribuzioni risultanti dalla m. di altre distribuzioni [...]
di funzioni di ripartizione unidimensionali, dipendenti da un punto variabile in un sottoinsieme boreliano E1m dello spazio euclideo Em. La funzione di ripartizione unidimensionale:
,
dove G è una funzione di ripartizione m-dimensionale, è una ...
Leggi Tutto
euclideo
euclidèo (ant. euclìdico) agg. – Relativo al matematico greco Euclide, vissuto intorno al 300 a. C.; in partic., di ente geometrico, o meglio di un sistema ipotetico-deduttivo, soddisfacente i postulati di Euclide: geometria e., v....
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...