Whitney Hassler
Whitney 〈uìtni〉 Hassler [STF] (n. New York 1907) Prof. di matematica nella Harvard Univ. (1946) e di Princeton (1952). ◆ [ALG] Classi di W., o di Stiefel-W.: per una varietà differenziabile [...] delle varietà differenziabili: una varietà differenziabile M, di dimensione n, chiusa e connessa, corrisponde sempre, in un opportuno diffeomorfismo, a una varietà N dello spazio euclideo (2n+1)-dimensionale: v. varietà differenziabili: VI 490 a. ...
Leggi Tutto
dimensione
dimensióne [Der. del lat. dimensio -onis "misura", dal part. pass. dimensus di dimetiri "misurare"] [MCQ] D. anomala: una d. operatoriale diversa da quella canonica di una data teoria. ◆ [MCC] [...] . ◆ [FML] D. frattale: l'estensione a insiemi limitati arbitrari della nozione di d. di una figura geometrica nello spazio euclideo; ha varie definizioni, equivalenti soltanto in casi particolari e tra esse la più usata è quella di d. di ricoprimento ...
Leggi Tutto
modulo
mòdulo [Der. del lat. modulus, dim. di modus "misura"] [LSF] Termine, accompagnato da opportune qualificazioni, per indicare grandezze caratteristiche di certi fenomeni o di certi congegni: m. [...] assoluto. ◆ [ALG] M. di un vettore v: indicato con |v| o semplic. con v, è definito, in uno spazio euclideo, dalla radice quadrata del prodotto scalare del vettore con sé stesso; è, intuitivamente, la "lunghezza" o "intensità" del vettore. ◆ [ALG ...
Leggi Tutto
Leggi di scala
Luciano Pietronero
Le leggi di scala riguardano il comportamento di una struttura in funzione della scala da cui la si guarda. Per i sistemi regolari, sia matematici sia fisici e naturali, [...] Γ(r)=rα può essere messa in relazione al volume generalizzato N(L). Per un frattale di dimensione D definito in uno spazio euclideo di dimensione d si ottiene α=−(d−D). La differenza (d−D) è detta codimensione ed è sempre positiva per un insieme ...
Leggi Tutto
lagrangiano
lagrangiano [agg. Der. del cognome di G.L. Lagrange] [MCC] Qualifica delle grandezze descrittive della dinamica di un sistema materiale continuo quando sono riferite non al generico punto [...] l.: particolare spazio di Hausdorff, i cui elementi sono le funzioni di punto f(P) definite in un medesimo dominio D dello spazio euclideo, e nel quale per intorno di una funzione f₀(P) s'intenda l'insieme (detto intorno l.) di tutte le funzioni f(P ...
Leggi Tutto
Lame Gabriel
Lamé 〈lamé〉 Gabriel [STF] (Tours 1795 - Parigi 1870) Prof. di fisica nell'École polytechnique di Parigi (1832) e di calcolo delle probabilità nell'univ. di Parigi (1848); socio straniero [...] di uno spazio tridimensionale, che, una volta soddisfatte, danno le condizioni necessarie e sufficienti perché lo spazio sia euclideo. ◆ [FSD] Teorema di L.: è costituito dalle relazioni costitutive dell'elasticità tra le componenti dello sforzo e ...
Leggi Tutto
geometria
geometrìa [Der. del gr. gÝeometría, comp. di G✄è "Terra" e -metría "misurazione della Terra" (intesa soprattutto come porzioni di superficie terrestre), e dunque propr. "agrimensura", come [...] (per un punto esterno a una retta passa una e una sola parallela a una retta data). Esistono due tipi di g. non euclidea, la g. iperbolica, o di Lobacevskij, nella quale si postula che da ogni punto escono infinite parallele a una retta data, e la ...
Leggi Tutto
armonico
armònico [agg. (pl.m. -ci) e s.m. Der. del gr. harmonikós, da harmózo "accordare"] [LSF] Termine inizialmente proprio dell'arte musicale, dall'accez. relativa alle corde di alcuni strumenti [...] a. costituiscono una generalizzazione molto ampia delle funzioni a., in quanto sono definibili non soltanto, come quelle, nello spazio euclideo, ma anche sopra una varietà differenziabile (per le p-forme a., v. varietà riemanniane: VI 506 a). ◆ [ANM ...
Leggi Tutto
Fisica
In acustica si definiscono suoni armonici o armoniche i suoni componenti, di varia altezza e di frequenza multipla di una stessa, che costituiscono un suono composto insieme con il componente [...] nel fatto che esse possono essere definite sopra una varietà differenziabile, mentre le ordinarie funzioni a. sono definite soltanto in uno spazio euclideo.
Gruppo a. Un gruppo a. di punti è un gruppo di 4 punti A, B, C, D su una retta tali che ...
Leggi Tutto
Livello massimo, al di sopra o al di sotto del quale si verifica un fenomeno.
Fisica
Angolo limite
In ottica, nel passaggio di un raggio da un mezzo a un altro con indice di rifrazione assoluto inferiore [...] ).
Limite per una funzione puntuale di punto
Se il punto Q=F(P) variabile nello spazio euclideo En è funzione di un punto P, variabile in un insieme A dello spazio
euclideo En, si dice che limP→P0 F(P)=L (essendo P0 un punto di accumulazione dell ...
Leggi Tutto
euclideo
euclidèo (ant. euclìdico) agg. – Relativo al matematico greco Euclide, vissuto intorno al 300 a. C.; in partic., di ente geometrico, o meglio di un sistema ipotetico-deduttivo, soddisfacente i postulati di Euclide: geometria e., v....
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...