BURGATTI, Pietro
Enzo Pozzato
Nacque a Cento (Ferrara) il 27 febbr. 1868 da Federico e da Marietta Biegoli. Aveva abbracciato negli anni giovanili la carriera militare, che abbandonò per l'interesse [...] ristretta, fatta mediante il calcolo vettoriale e l'espressione dei coefficienti della trasformazione in un S4 pseudo-euclideo (spazio-tempo) della relatività ristretta: Sulle trasformaz. di Lorentz, in Rend. dell'Accad. naz. dei Lincei, cl ...
Leggi Tutto
varieta
varietà [Der. del lat. varietas -atis, da varius "vario"] [ALG] Nozione che generalizza quella di curva e superficie; intuitivamente, si presenta come un ente geometrico a n dimensioni (con n [...] 491 a. ◆ [ALG] V. differenziabile: è, intuitivamente, uno spazio topologico con proprietà differenziali analoghe a quelle dello spazio euclideo Rn, che permettono l'introduzione e lo sviluppo di un calcolo differenziale simile a quello comune nello ...
Leggi Tutto
lineare
lineare [agg. Der. del lat. linearis, da linea] [LSF] Inerente a una linea, in partic : (a) che è costituito o è schematizzabile da una linea (per lo più retta) o che si sviluppa prevalentemente [...] le coordinate di un punto P' corrispondente a un altro punto P sono funzioni l. delle coordinate di P; per es., sul piano euclideo, una trasformazione l. è rappresentata dal sistema x'=ax+by, y'=cx+dy, con a, b, c, d numeri reali; la matrice (acbd ...
Leggi Tutto
intersezione
intersezióne [Der. del lat. intersectio -onis, da intersecare, comp. di inter- e secare, e quindi "tagliare nel mezzo"] [ALG] L'incontrarsi di enti geometrici (due rette, una retta e un [...] loro i. il massimo sottospazio di S (ammesso che ne esista uno solo) contenuto sia in S₁ che in S₂; per es., nello spazio euclideo a tre dimensioni, lo spazio i. di due piani generici è la retta a essi comune (non esiste se i piani sono paralleli). ...
Leggi Tutto
FOTOMETRIA (XV, p. 817)
Eligio Perucca
In senso stretto la f. è l'insieme delle definizioni, dei metodi di misurazione, delle unità delle grandezze fisiche (grandezze fotometriche) con le quali si descrivono [...] fotometriche I, Φl, Ql R, B, E. Una di queste deve prendere rango di grandezza fondamentale, da definirsi in modo diretto (euclideo) e se ne può scegliere a piacere l'unità. Si è convenuto di assumere come tale l'intensità I; le altre cinque sono ...
Leggi Tutto
DE MARTINO (Di Martino), Pietro
Pietro Nastasi
Fratello di Nicola Antonio, nacque a Faicchio (Benevento) il 31 maggio 1707 da Cesare e Agata Ferrari.
Compiuta la primissima istruzione nel seminario [...] relativo ai caratteri matematici in cui è scritto il libro dell'Universo.
Si noti come l'adesione al testo euclideo costringa il D. a dare numerose spiegazioni delle varie "sorti di principi" (definizioni, domande, assiomi). Così a proposito della ...
Leggi Tutto
Hilbert, David
Hilbert ⟨hìlbërt⟩ David [STF] (Königsberg 1862 - Gottinga 1943) Prof. di matematica nell'univ. di Gottinga (1895); socio straniero dei Lincei (1903). ◆ Azione di H.-Einstein: v. gravità [...] H., è lo spazio vettoriale generato da un sottoinsieme B'ÌB di elementi della base. ◆ Spazio di H.: estensione dello spazio euclideo, e precis. uno spazio di Banach nel quale la norma di un elemento è indotta dal prodotto interno: funzionale, analisi ...
Leggi Tutto
impulso
impulso [Der. del part. pass. impulsus del lat. impellere "spingere innanzi", comp. di in- e pellere "spingere"] [MCC] Oltre ai signif. specifici ricordati più oltre, il termine indica: (a) una [...] corpo. ◆ [MCQ] Operatore di i.: v. meccanica quantistica: III 707 f. ◆ [MCC] [MCS] Spazio degli i.: lo spazio euclideo n-dimensionale individuato nello spazio delle fasi dalle n variabili rappresentanti gli impulsi. ◆ [MCQ] [MCC] Teorema dell'i.: l'i ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1951-1960
1951-1960
1951
Sui gruppi di omotopia e di omologia. In una serie di articoli (Homologie singulière des espaces fibrés) Jean-Pierre Serre fornisce [...] , di D. Montgomery e di L. Zippin viene risolta una parte del V problema di Hilbert: ogni gruppo topologico localmente euclideo è un gruppo di Lie.
Sulle varietà algebriche reali. John F. Nash dimostra che ogni varietà reale compatta è diffeomorfa a ...
Leggi Tutto
numero
nùmero [Der. del lat. numerus] [LSF] Oltre che nei vari signif. propri della matematica, alcuni dei quali sono ricordati oltre, il termine è usato in varie discipline fisiche anche come sinon. [...] ...-2, -1, 0, 1, 2,..., e detti anche n. interi relativi; l'insieme dei n. interi costituisce un anello commutativo, euclideo, principale, ordinato, nonché un dominio di integrità, ed è indicato con il simb. Z (dal ted. Zahl "numero"). ◆ [ALG] N ...
Leggi Tutto
euclideo
euclidèo (ant. euclìdico) agg. – Relativo al matematico greco Euclide, vissuto intorno al 300 a. C.; in partic., di ente geometrico, o meglio di un sistema ipotetico-deduttivo, soddisfacente i postulati di Euclide: geometria e., v....
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...