geometria
geometrìa [Der. del gr. gÝeometría, comp. di G✄è "Terra" e -metría "misurazione della Terra" (intesa soprattutto come porzioni di superficie terrestre), e dunque propr. "agrimensura", come [...] (per un punto esterno a una retta passa una e una sola parallela a una retta data). Esistono due tipi di g. non euclidea, la g. iperbolica, o di Lobacevskij, nella quale si postula che da ogni punto escono infinite parallele a una retta data, e la ...
Leggi Tutto
armonico
armònico [agg. (pl.m. -ci) e s.m. Der. del gr. harmonikós, da harmózo "accordare"] [LSF] Termine inizialmente proprio dell'arte musicale, dall'accez. relativa alle corde di alcuni strumenti [...] a. costituiscono una generalizzazione molto ampia delle funzioni a., in quanto sono definibili non soltanto, come quelle, nello spazio euclideo, ma anche sopra una varietà differenziabile (per le p-forme a., v. varietà riemanniane: VI 506 a). ◆ [ANM ...
Leggi Tutto
Fisica
In acustica si definiscono suoni armonici o armoniche i suoni componenti, di varia altezza e di frequenza multipla di una stessa, che costituiscono un suono composto insieme con il componente [...] nel fatto che esse possono essere definite sopra una varietà differenziabile, mentre le ordinarie funzioni a. sono definite soltanto in uno spazio euclideo.
Gruppo a. Un gruppo a. di punti è un gruppo di 4 punti A, B, C, D su una retta tali che ...
Leggi Tutto
Livello massimo, al di sopra o al di sotto del quale si verifica un fenomeno.
Fisica
Angolo limite
In ottica, nel passaggio di un raggio da un mezzo a un altro con indice di rifrazione assoluto inferiore [...] ).
Limite per una funzione puntuale di punto
Se il punto Q=F(P) variabile nello spazio euclideo En è funzione di un punto P, variabile in un insieme A dello spazio
euclideo En, si dice che limP→P0 F(P)=L (essendo P0 un punto di accumulazione dell ...
Leggi Tutto
Astronomia
Ciascuno degli aspetti che presentano la Luna e alcuni pianeti a causa dei loro moti intorno al Sole e alla Terra, che fanno variare la porzione del loro disco illuminato dal Sole visibile dalla [...] onda).
In meccanica statistica, spazio delle f. è, per un sistema a n gradi di libertà q1, q2, …, qn, lo spazio euclideo a 2n dimensioni individuato dalle variabili q1, q2, …, qn e dai corrispondenti momenti coniugati p1, p2, …, pn. Un punto dello ...
Leggi Tutto
Lorentz Hendrik Antoon
Lorentz 〈lòorents〉 Hendrik Antoon [STF] (Arnem 1853 - Haarlem 1928) Prof. di fisica matematica nell'univ. di Leida (1878); socio straniero dei Lincei (1902); ebbe il premio Nobel [...] v. elettrodinamica classica: II 284 b. ◆ [ALG] Gruppo di L.: il gruppo di tutte le trasformazioni di L. nello spazio euclideo a quattro dimensioni su cui è definita l'operazione di composizione. ◆ [MCQ] Gruppo disomogeneo di L.: v. gruppo di Poincaré ...
Leggi Tutto
fìsica matemàtica Disciplina scientifica che si propone di descrivere in termini matematici rigorosi i fenomeni fisici.
Abstract di approfondimento da Fisica matematica di Gianfausto Dell’Antonio (Enciclopedia [...] assiomatica anche per le funzioni di Schwinger. Konrad Osterwalder e Robert Schrader hanno dimostrato che a ogni teoria euclidea così formulata corrisponde in modo biunivoco una teoria minkowskiana di Wightman e pertanto la costruzione di una teoria ...
Leggi Tutto
In una qualunque superficie generata dalla rotazione di una curva intorno a un asse fisso e a essa rigidamente collegato (superficie di rotazione), il cerchio descritto da un punto della curva generatrice, [...] p. a s); analogamente tra due piani o tra retta e piano.
La nozione di enti p. si generalizza in vari modi. In un iperspazio euclideo, o affine, due spazi subordinati, delle dimensioni h, k, si dicono p. se non hanno punti comuni e se il loro spazio ...
Leggi Tutto
La civilta islamica: teoria fisica, metodo sperimentale e conoscenza approssimata. Statica
Fayza Bancel
Mariam Rozhanskaya
Statica
La statica è quella parte della meccanica che si occupa dell'equilibrio [...] . I principî dell'equilibrio sono studiati su una leva a partire dalla rottura del suo equilibrio.
La seconda corrente, detta euclideo-archimedea, si fa risalire agli scritti sulla bilancia e sulla leva attribuiti a Euclide (III sec. a.C. ca.). Non ...
Leggi Tutto
La grande scienza. Fisica matematica: recenti sviluppi
Gianfausto Dell'Antonio
Fisica matematica: recenti sviluppi
La fisica matematica si può definire come la disciplina scientifica che si propone [...] limite semiclassico della teoria dei campi quantistici) si può vedere nel caso della struttura degli 'istantoni'.
In uno spazio euclideo a quattro dimensioni la condizione che l'integrale su tutto lo spazio della traccia di FμνFμν sia finito implica ...
Leggi Tutto
euclideo
euclidèo (ant. euclìdico) agg. – Relativo al matematico greco Euclide, vissuto intorno al 300 a. C.; in partic., di ente geometrico, o meglio di un sistema ipotetico-deduttivo, soddisfacente i postulati di Euclide: geometria e., v....
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...