Fisica
Per il nucleo esotico ➔ esòtico, nùcleo.
Geologia
In geotettonica, si dice esotico un blocco o lembo arealmente molto limitato di rocce alloctone, inglobato entro terreni litologicamente diversi [...] diffeomorfa a essa. Il termine esotico passò poi a denominare varietà omeomorfe a una data varietà modello, ma non diffeomorfe a essa. In particolare è stata dimostrata l’esistenza di infinite varietà esotico dello spazio euclideo quadridimensionale. ...
Leggi Tutto
Fisico matematico statunitense (Rochester, New York, 1922 - Princeton 2013). Laureatosi presso la Yale University (1942), nel 1949 ha conseguito il PhD presso la Princeton University. Prof. di fisica matematica [...] di sistemi quantistici. Tali assiomi, proposti in origine nel caso di funzioni di correlazione definite sullo spazio di Minkowski, sono stati poi generalizzati al caso euclideo, e costituiscono la base della moderna teoria costruttiva dei campi. ...
Leggi Tutto
geometria frattale
Luca Tomassini
Appellativo che si riferisce alle proprietà geometriche degli insiemi frattali e al loro studio. Il concetto di insieme frattale è stato originariamente introdotto [...] sull’osservazione che il numero di sfere necessario a riempire una figura geometrica regolare (per es., nello spazio euclideo tridmensionale) sarà proporzionale al volume, ovvero a una lunghezza L elevata alla potenza 3 (la dimensione dello spazio ...
Leggi Tutto
vettoriale
vettoriale [agg. Der. di vettore "inerente a vettori"] [ANM] Analisi, o calcolo, v.: la parte della matematica che s'occupa degli algoritmi con i quali si opera sui vettori (a questi si applicano, [...] quando (v₁, v₂)=0, di base ortonormale, ecc. ◆ [ALG] Spazio v. di omologia: v. forme differenziali: II 687 f. ◆ [ALG] Spazio v. euclideo: uno spazio v. in cui, oltre alla somma dei vettori e al prodotto dei vettori per gli elementi del campo con il ...
Leggi Tutto
infinito
infinito [agg. e s.m. Der. del lat. infinitus, comp. di in- neg. e del part. pass. finitus di finire "limitare", da finis "confine"] [LSF] Oltre che nei signif. matematici (per i quali v. oltre), [...] , punti la cui distanza sia molto maggiore della distanza focale del sistema; (b) nella teoria dei campi nello spazio euclideo illimitato, si considera all'i. ogni punto a distanza sufficientemente grande (che in assoluto può anche essere modesta ...
Leggi Tutto
L'Ottocento: matematica. Geometria superiore
David E. Rowe
Geometria superiore
Per gran parte del XIX sec., i matematici non ebbero un'idea ben definita del campo di ricerca che è possibile chiamare [...] spazio fisico. Verso la fine degli anni Sessanta, dopo le scoperte di Eugenio Beltrami (1835-1900) sulle geometrie non euclidee, gli spazi a curvatura costante avrebbero attirato maggiore interesse. In seguito agli studi di Sophus Lie (1842-1899) e ...
Leggi Tutto
connessione
connessióne [Der. del lat. connessio -onis, dal lat. connexus (→ connesso) "l'essere connesso, il modo in cui si è connessi"] [ALG] [ANM] Generic., legame di dipendenza fra due o più grandezze [...] : II 577 a. ◆ [FTC] [EMG] C. elettrica: lo stesso che collegamento elettrico. ◆ [ALG] C. euclidea: estende a una varietà il concetto di parallelismo euclideo: v. connessione: I 725 f. ◆ [ALG] C. lineari: permettono di definire le derivate covarianti ...
Leggi Tutto
ordinario
ordinàrio [agg. Der. del lat. ordinarius "conforme all'ordine", da ordo -inis "ordine"] [LSF] Qualifica di un ente che non abbia alcunché di speciale, in contrapp. a enti omogenei provvisti [...] il piano tangente. ◆ [OTT] Raggio o.: nel fenomeno della birifrazione, quello dei due raggi rifratti che segue le leggi della rifrazione regolare (l'altro è il raggio straordinario). ◆ [ALG] Spazio o.: spazio, euclideo o proiettivo, a tre dimensioni. ...
Leggi Tutto
Bessel Friedrich Wilhelm
Bessel 〈bèsël〉 Friedrich Wilhelm [STF] (Minden 1784 - Königsberg 1846) Prof. di astronomia (1810) nell'univ. di Königsberg e fondatore del locale Osservatorio astronomico. ◆ [...] , allo scopo di determinare una lunghezza esatta indipendentemente dalla diversa dilatazione termica. ◆ [ALG] Disuguaglianza di B.: in uno spazio euclideo n-dimensionale, se v è un vettore e u₁,...,ur formano un insieme di r versori ortogonali, è la ...
Leggi Tutto
Botanica
Si dice di un organo (per es., una foglia) quando il suo contorno ha quasi esattamente la forma di un ellisse, ha cioè i due estremi arrotondati; oppure, meno propriamente, quando i due estremi [...] come segue: sia α=( α1,…, αn) una n-upla di interi αk=0,1,2,… e ξ =(ξ1,…, ξn) un vettore nello spazio euclideo n-dimensionale Rn, e si
definiscano |α| = α1+…+αn, Dk= ∂−−−∂xk ; un
operatore L= ∑∣α∣≤maα (x) D1α1 ∙ … ∙ Dnαn, con
aα(x) funzioni ...
Leggi Tutto
euclideo
euclidèo (ant. euclìdico) agg. – Relativo al matematico greco Euclide, vissuto intorno al 300 a. C.; in partic., di ente geometrico, o meglio di un sistema ipotetico-deduttivo, soddisfacente i postulati di Euclide: geometria e., v....
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...