riemanniano
riemanniano 〈riimanniano〉 [agg. e s.m. Der. del nome di B. Riemann] [ALG] R. di una varietà algebrica: varietà reale i cui punti siano in corrispondenza biunivoca e bicontinua con i punti [...] del tensore di Riemann (←); questo permette di calcolare certe "curvature", che sono tutte nulle nel caso di uno spazio euclideo, mentre in generale danno una misura di quanto la varietà r. e la relativa geometria si discostino dall'ordinario spazio ...
Leggi Tutto
cammino
cammino [Der. del lat. camminus, da un termine celtico "l'andare a piedi da un punto a un altro"] [LSF] Oltre a signif. legati a quello letterale del termine (c. libero medio, c. ottico, ecc.), [...] di punti di uno spazio topologico che si possono porre in corrispondenza univoca e continua con un segmento euclideo: corrisponde al concetto intuitivo di linea tracciabile con un solo tratto continuo di matita (non escludendo sovrapposizioni e ...
Leggi Tutto
vettoriale
vettoriale [agg. Der. di vettore "inerente a vettori"] [ANM] Analisi, o calcolo, v.: la parte della matematica che s'occupa degli algoritmi con i quali si opera sui vettori (a questi si applicano, [...] quando (v₁, v₂)=0, di base ortonormale, ecc. ◆ [ALG] Spazio v. di omologia: v. forme differenziali: II 687 f. ◆ [ALG] Spazio v. euclideo: uno spazio v. in cui, oltre alla somma dei vettori e al prodotto dei vettori per gli elementi del campo con il ...
Leggi Tutto
infinito
infinito [agg. e s.m. Der. del lat. infinitus, comp. di in- neg. e del part. pass. finitus di finire "limitare", da finis "confine"] [LSF] Oltre che nei signif. matematici (per i quali v. oltre), [...] , punti la cui distanza sia molto maggiore della distanza focale del sistema; (b) nella teoria dei campi nello spazio euclideo illimitato, si considera all'i. ogni punto a distanza sufficientemente grande (che in assoluto può anche essere modesta ...
Leggi Tutto
L'Ottocento: matematica. Algebra della logica
Massimo Mugnai
Algebra della logica
Logica e matematica: pensare e calcolare
Sia nell'Antichità sia durante il Medioevo, la logica e la matematica si configurano [...] fanno sì che si affermi la convinzione secondo la quale la vera tecnica dimostrativa debba essere ricercata nello scritto euclideo, anziché nella logica della tradizione aristotelica. Al tempo stesso, in tale periodo, viene posto in modo esplicito il ...
Leggi Tutto
connessione
connessióne [Der. del lat. connessio -onis, dal lat. connexus (→ connesso) "l'essere connesso, il modo in cui si è connessi"] [ALG] [ANM] Generic., legame di dipendenza fra due o più grandezze [...] : II 577 a. ◆ [FTC] [EMG] C. elettrica: lo stesso che collegamento elettrico. ◆ [ALG] C. euclidea: estende a una varietà il concetto di parallelismo euclideo: v. connessione: I 725 f. ◆ [ALG] C. lineari: permettono di definire le derivate covarianti ...
Leggi Tutto
ordinario
ordinàrio [agg. Der. del lat. ordinarius "conforme all'ordine", da ordo -inis "ordine"] [LSF] Qualifica di un ente che non abbia alcunché di speciale, in contrapp. a enti omogenei provvisti [...] il piano tangente. ◆ [OTT] Raggio o.: nel fenomeno della birifrazione, quello dei due raggi rifratti che segue le leggi della rifrazione regolare (l'altro è il raggio straordinario). ◆ [ALG] Spazio o.: spazio, euclideo o proiettivo, a tre dimensioni. ...
Leggi Tutto
Bessel Friedrich Wilhelm
Bessel 〈bèsël〉 Friedrich Wilhelm [STF] (Minden 1784 - Königsberg 1846) Prof. di astronomia (1810) nell'univ. di Königsberg e fondatore del locale Osservatorio astronomico. ◆ [...] , allo scopo di determinare una lunghezza esatta indipendentemente dalla diversa dilatazione termica. ◆ [ALG] Disuguaglianza di B.: in uno spazio euclideo n-dimensionale, se v è un vettore e u₁,...,ur formano un insieme di r versori ortogonali, è la ...
Leggi Tutto
dominio
domìnio [Der. del lat. dominium, da dominus "padrone"] [LSF] (a) L'esercitare una determinante influenza. (b) Una definita regione dello spazio in cui si manifesta un determinato fenomeno. (c) [...] chiuso, ogni punto del quale sia punto di accumulazione di punti interni e pertanto insieme perfetto; per es., nel piano euclideo, un d. rettangolare (o circolare) chiuso è costituito da tutti i punti di un rettangolo (o di un cerchio), contorno ...
Leggi Tutto
gruppo di Lie
Luca Tomassini
Un gruppo G sul quale sia definita una struttura di varietà analitica tale che la mappa μ:(x,y)→xy−1 dal prodotto diretto G×G in G stesso sia analitica. In altre parole, [...] del gruppo lineare generale GL(n,ℝ) sul campo dei numeri reali ℝ e i suoi sottogruppi chiusi nella topologia euclidea naturale. Non a caso, tali gruppi furono originariamente introdotti da Sophus Lie come gruppi di trasformazioni locali dello spazio ...
Leggi Tutto
euclideo
euclidèo (ant. euclìdico) agg. – Relativo al matematico greco Euclide, vissuto intorno al 300 a. C.; in partic., di ente geometrico, o meglio di un sistema ipotetico-deduttivo, soddisfacente i postulati di Euclide: geometria e., v....
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...