L'Eta dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele
Peter Schreiber
Geometria analitica, delle curve e delle superfici. Il problema delle parallele
A [...] (fig. 8). Anche qui si dimostra che l'ipotesi che l'angolo α sia ottuso è incompatibile con gli altri assiomi euclidei, mentre è soddisfatta sulla sfera, e che l'ipotesi che α sia retto è equivalente al postulato delle parallele. Anche Lambert ...
Leggi Tutto
In matematica, termine coniato nel 1975 dal matematico francese B. Mandelbrot per indicare un particolare ente geometrico la cui forma è invariante nel cambiamento della scala delle lunghezze (proprietà [...] complessa. La forma del f. non si presenta quindi regolare come, per es., nelle figure elementari della geometria euclidea che a piccole scale perdono la loro struttura, bensì estremamente frastagliata. In fig. sono riportati esempi di procedimenti ...
Leggi Tutto
La grande scienza. Geometria non commutativa
Alain Connes
Geometria non commutativa
Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] in seguito. L'usuale geometria è solo un caso particolare di questa nuova teoria, così come le geometrie euclidea e non euclidea sono casi particolari della geometria riemanniana. Molti dei concetti più familiari continuano a sussistere, ma con un ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. I fondamenti della geometria
Umberto Bottazzini
I fondamenti della geometria
Verso la metà del XIX sec. Georg Friedrich Bernhard Riemann (1826-1866) [...] fondamenti che cambia i temi all'ordine del giorno nell'agenda dei geometri: è la questione dei fondamenti della geometria euclidea a essere posta con forza in primo piano, come aveva intravisto Pieri per primo. Viene meno l'interesse a minimizzare ...
Leggi Tutto
Ente geometrico fondamentale, in genere assunto come primitivo nelle trattazioni assiomatiche.
Astronomia
R. d’altezza Proiezione di un tratto del cerchio d’altezza (➔ cerchio) sopra una carta di Mercatore. [...] Nello spazio, sono due r. tali che esista un piano passante per l’una e ortogonale all’altra. R. parallele Nella geometria euclidea, sono r. di un piano che non hanno un punto comune; nella geometria affine sono r. che s’incontrano in un punto ...
Leggi Tutto
tensore di Ricci
Gilberto Bini
Sia M una varietà dotata di una metrica riemanniana. Indichiamo rispettivamente con gij e con Rijkl le espressioni locali della metrica riemanniana e delle componenti [...] esistono delle coordinate locali rispetto alle quali i coefficienti gij della metrica possono essere approssimati da quelli della metrica euclidea a meno di termini quadratici. Rispetto a tali coordinate la forma di volume di M si esprime in termini ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] esponenziali e logaritmiche.
Il sesto capitolo studia più in generale lo spazio numerico ℝn, la sua topologia, la distanza euclidea, e prosegue con lo spazio proiettivo reale ℙn.
Il settimo capitolo tratta i sottogruppi e i gruppi quozienti di ...
Leggi Tutto
Geometria differenziale
SShoshichi Kobayashi
di Shoshichi Kobayashi
Geometria differenziale
sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...]
Da un punto di vista geometrico lo spazio tangente Tp(M) è considerato come un piano n-dimensionale in RN e la struttura euclidea di RN induce il prodotto interno su Tp(M) dato dalla (16). Dato che ogni metrica nemanniana su M si può ottenere in ...
Leggi Tutto
In matematica, spazio a più dimensioni; il numero di queste si indica generalmente con n, nel qual caso si parla anche di spazio di dimensione n; poiché lo spazio ordinario è a tre dimensioni, in senso [...] angoli, il parallelismo, la perpendicolarità e generalizzare le altre nozioni valide nella geometria ordinaria, in modo da sviluppare una ‘geometria euclidea’ in un i. di dimensione n.
I. proiettivo, di dimensione n I suoi punti sono le (n+1)-ple (x0 ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. Geometria pratica
Hélène Bellosta
Geometria pratica
Nella classificazione delle scienze di al-Fārābī figura la categoria dei 'procedimenti [...] le definizioni della maggior parte delle figure geometriche e dei termini adottati, spesso negli stessi termini delle definizioni euclidee, e anche alcune dimostrazioni, mentre per altre si rimanda agli Elementi di Euclide, alle opere di Archimede e ...
Leggi Tutto
euclideo
euclidèo (ant. euclìdico) agg. – Relativo al matematico greco Euclide, vissuto intorno al 300 a. C.; in partic., di ente geometrico, o meglio di un sistema ipotetico-deduttivo, soddisfacente i postulati di Euclide: geometria e., v....
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...