riemanniano
riemanniano 〈riimanniano〉 [agg. e s.m. Der. del nome di B. Riemann] [ALG] R. di una varietà algebrica: varietà reale i cui punti siano in corrispondenza biunivoca e bicontinua con i punti [...] del tensore di Riemann (←); questo permette di calcolare certe "curvature", che sono tutte nulle nel caso di uno spazio euclideo, mentre in generale danno una misura di quanto la varietà r. e la relativa geometria si discostino dall'ordinario spazio ...
Leggi Tutto
metrica
mètrica [s.f. dall'agg. metrico] [ALG] Generalizzazione, per un insieme astratto, del concetto di misura della distanza dell'ordinario spazio euclideo (v. oltre), consistente in una funzione [...] (a, b, x, x'), dove x e x' sono i punti in cui la retta per a e b incontra Γ. L'ordinaria m. del piano euclideo si può ottenere come caso particolare di m. proiettiva in relazione a un'opportuna scelta di Γ. ◆ [RGR] M. relativistica: lo stesso che m ...
Leggi Tutto
topologia
topologìa [Comp. di topo- e -logia] [LSF] Per estensione del signif. nell'algebra (v. oltre), il termine indica anche la forma intrinseca di una struttura, cioè la forma che attiene alle proprietà [...] , σ-debole, della norma, forte, *forte, σ-forte, σ-*forte): v. algebre di operatori: I 97 c e Tab. 4.1. ◆ [ALG] T. euclidea: v. spazio topologico: V 468 a. ◆ [ALG] T. indotta e t. prodotto: v. spazio topologico: V 468 e, 470 a. ◆ [ALG] T. relativa ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero: Scienze (2013)
Dalla prospettiva dei pittori alla prospettiva dei matematici
Pietro Roccasecca
Il progressivo abbandono nei dipinti su tavola dei fondi oro in favore di paesaggi e vedute urbane, l’attenzione al naturale [...] storia della prospettiva, che d’ora in poi si caratterizza sempre di più come una disciplina fondata sulla geometria euclidea e dimostrata mediante il disegno lineare, pronta per passare dal dominio disciplinare dei pittori a quello degli architetti ...
Leggi Tutto
L'Ottocento: matematica. Geometria superiore
David E. Rowe
Geometria superiore
Per gran parte del XIX sec., i matematici non ebbero un'idea ben definita del campo di ricerca che è possibile chiamare [...] spazio fisico. Verso la fine degli anni Sessanta, dopo le scoperte di Eugenio Beltrami (1835-1900) sulle geometrie non euclidee, gli spazi a curvatura costante avrebbero attirato maggiore interesse. In seguito agli studi di Sophus Lie (1842-1899) e ...
Leggi Tutto
varieta
varietà [Der. del lat. varietas -atis, da varius "vario"] [ALG] Nozione che generalizza quella di curva e superficie; intuitivamente, si presenta come un ente geometrico a n dimensioni (con n [...] 491 a. ◆ [ALG] V. differenziabile: è, intuitivamente, uno spazio topologico con proprietà differenziali analoghe a quelle dello spazio euclideo Rn, che permettono l'introduzione e lo sviluppo di un calcolo differenziale simile a quello comune nello ...
Leggi Tutto
Hilbert, David
Hilbert ⟨hìlbërt⟩ David [STF] (Königsberg 1862 - Gottinga 1943) Prof. di matematica nell'univ. di Gottinga (1895); socio straniero dei Lincei (1903). ◆ Azione di H.-Einstein: v. gravità [...] H., è lo spazio vettoriale generato da un sottoinsieme B'ÌB di elementi della base. ◆ Spazio di H.: estensione dello spazio euclideo, e precis. uno spazio di Banach nel quale la norma di un elemento è indotta dal prodotto interno: funzionale, analisi ...
Leggi Tutto
Matematico e fisico siracusano (Siracusa 287 - ivi 212 a. C.). È stato uno dei più grandi matematici dell'antichità. Probabilmente allievo di Euclide, compì forse un viaggio in Egitto, studiando ad Alessandria; [...] ): dati due segmenti qualunque a, b, tali che a 〈 b, esiste un multiplo na di a per cui è na > b; il postulato è indipendente dai precedenti, nella sistemazione data da D. Hilbert all'assiomatica euclidea. ▭ Spirale di Archimede: v. spirale. ...
Leggi Tutto
iperbolico
iperbòlico [agg. (pl.m. -ci) Der. di iperbole] [ALG] Cilindro i.(propr., cilindro a sezioni i.): cilindro quadrico tale che tutte le sue sezioni piane siano iperboli (v. fig). ◆ [ANM] Coseno [...] funzioni i., e nella tab. 4 alcuni integrali di espressioni contenenti tali funzioni. ◆ [ALG] Geometria i.: una delle due geometrie non euclidee, ideata da N.J. Lobacevskij e J.Bolyai, nella quale da un "punto" esterno a una "retta" in un "piano" si ...
Leggi Tutto
L’azione, il fatto e il modo di orientare, cioè di stabilire la posizione rispetto ai punti cardinali. Nell’uomo, la capacità di riconoscere il luogo in cui ci si trova, la direzione che si sta seguendo [...] deve essere data per ciascun ente su cui si possa e si voglia stabilire un orientamento. Orientare una retta (euclidea o proiettiva) o una qualunque linea continua significa stabilire un verso di percorrenza sopra la linea. Orientare una terna ...
Leggi Tutto
euclideo
euclidèo (ant. euclìdico) agg. – Relativo al matematico greco Euclide, vissuto intorno al 300 a. C.; in partic., di ente geometrico, o meglio di un sistema ipotetico-deduttivo, soddisfacente i postulati di Euclide: geometria e., v....
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...