Numeri
Umberto Zannier
Quanti? Quanto? Quando? A che distanza? Domande a cui rispondiamo, di solito, con numeri. Di essi facciamo continuo uso, e l’importanza concettuale, oltre che pratica, della nozione [...] ben illustra la natura del problema matematico, viene dal numero
Calcolando per esso approssimazioni razionali a partire dalla serie esponenziale e da qualche approssimazione per
e per π, come, per es., la serie di Gregory
troviamo per difetto ...
Leggi Tutto
Computazionali, metodi
Alfio Quarteroni
I metodi computazionali permettono di risolvere con i computer, nell'ambito delle scienze applicate, problemi complessi formulabili tramite il linguaggio della [...] un ulteriore errore. La combinazione di tale errore con gli errori di arrotondamento dell'aritmetica finita (quest'ultimo decresce esponenzialmente con −t, dove t è il numero di cifre significative della macchina) fornisce l'errore algoritmico ea=un ...
Leggi Tutto
Stocastica
Mark Kac
Storicamente i processi stocastici furono introdotti nel mondo della scienza (e più tardi della matematica) sotto una forma assai diversa da quella derivante dalla definizione formale [...] processo di Poisson. Questo significa che i tempi che intercorrono fra due emissioni successive sono indipendenti e seguono una legge di distribuzione esponenziale del tipo dato dall'equazione [91]. Per lo shot noise è f(t)=0 per t>Δ, dove Δ è il ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La teoria della misura
Maurice Sion
La teoria della misura
Con la nozione matematica di misura si vogliono analizzare concetti che si riferiscono [...] teoria moderna alla trasformata di Fourier di una misura ottenuta sostituendo i seni e i coseni con una funzione esponenziale complessa (o, in un ambito più generale, con una funzione che viene detta 'carattere'). Più precisamente la trasformata di ...
Leggi Tutto
GEOMETRIA ALGEBRICA
Ciro Ciliberto
Igor R. Shafarevich
Lo sviluppo delle idee di Ciro Ciliberto
Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] ℱ, i = 0, ..., k (v. geometria differenziale, vol. III). Scritto formalmente ct (ℱ) = Π (1 + ait), si definisce il carattere di Chern esponenziale di ℱ come ch (ℱ) =
exp(ai), e la classe di Todd di ℱ come td (ℱ) =
Sia ora f:X → Y un morfismo tra ...
Leggi Tutto
La scienza in Cina: dai Qin-Han ai Tang. La matematica
Alexei Volkov
Karine Chemla
Qu Anjing
La matematica
Le bacchette
di Alexei Volkov
Il sistema di numerazione cinese, sistema decimale e principio [...] quadro bidimensionale. Alla base dell'algebra cinese medievale vi era il principio classico dell'esistenza di una relazione (esponenziale) tra le posizioni ordinate linearmente sulla superficie di calcolo e le potenze successive di un dato numero. Il ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1971-1980
1971-1980
1971
I problemi NP-completi. L'informatico americano Stephen Cook dà il primo esempio di problema algoritmico NP-completo. La classe NP [...] , o il test non fallisce mai e n è primo con una probabilità 1−4-k, cioè con un errore esponenzialmente piccolo.
Verificato elettronicamente il teorema dei quattro colori. Tale teorema, secondo il quale quattro colori sono sufficienti per colorare ...
Leggi Tutto
Morbilità
Mirko D. Grmek
sommario: 1. Concetti e metodi. a) Orientamenti attuali dell'epidemiologia e definizione dei criteri di misura della morbilità. b) La malattia e le malattie: il problema della [...] , e nelle società ad alto livello di vita, questa crescita è stata spesso assai rapida e ha preso andamenti di curva esponenziale. Si tratta di un fenomeno che ci sembra derivare più dal mutamento della mentalità comune e dei mezzi di diagnosi e di ...
Leggi Tutto
La Rivoluzione scientifica: i domini della conoscenza. Dalla Geometrie al calcolo: il problema delle tangenti...
Enrico Giusti
Dalla Géométrie al calcolo: il problema delle tangenti e le origini del [...] di tutte le funzioni conosciute: le potenze e le radici, le funzioni circolari e le loro inverse, i logaritmi e gli esponenziali. In realtà, a voler essere precisi, non essendo ancora stato introdotto il concetto di funzione, il seno, la tangente, il ...
Leggi Tutto
L'Ottocento: matematica. Teoria dei numeri
Catherine Goldstein
Teoria dei numeri
Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] (per es., con la teoria delle funzioni algebriche).
Funzioni ellittiche e modulari
Le funzioni circolari seno, coseno ed esponenziale complesso sono già comparse più volte in questo capitolo, sia nelle dimostrazioni che nello studio diretto di loro ...
Leggi Tutto
esponenziale
agg. e s. m. [der. di esponente]. – 1. Relativo all’esponente, come esponente. a. In matematica, funzione e., quella del tipo y = ax, in cui cioè la variabile indipendente x compare come esponente (per a reale e maggiore di 1...
notazione
notazióne s. f. [dal lat. notatio -onis, der. di notare «notare2»]. – 1. a. L’atto, il fatto e il modo di notare, cioè di segnare o contrassegnare: la n. delle pagine di un libro, fatta con l’apposizione di numeri progressivi sulle...