L'Ottocento: astronomia. L'astronomia di posizione da Bessel ad Auwers
Dieter B. Herrmann
L'astronomia di posizione da Bessel ad Auwers
Fin dall'Antichità la scienza astronomica nel suo complesso [...] valore. Da tali considerazioni Bessel trasse infine ben 183 equazioni e in base a esse determinò la parallasse.
Partendo spettroscopiche dell'orbita, si possono trovare le dimensioni lineari del sistema e utilizzarle per calcolare la distanza. ...
Leggi Tutto
Analisi del rischio
Giuseppe Confessore
Per analisi del rischio s’intende l’insieme dei processi di identificazione (risk identification), di analisi in senso stretto (risk analysis, a volte risk evaluation [...] evidenziare scale lineari, in cui i valori sono definiti secondo una funzione matematica lineare, o scale non lineari al fine reali, comportamenti molto complessi descrivibili attraverso equazioni matematiche contenenti parametri stocastici, sia in ...
Leggi Tutto
L'Ottocento: matematica. Geometria superiore
David E. Rowe
Geometria superiore
Per gran parte del XIX sec., i matematici non ebbero un'idea ben definita del campo di ricerca che è possibile chiamare [...] fornito un classico studio di questo problema, derivando le equazioni del moto e dimostrando che in ogni istante il moto come argomento la geometria birazionale delle curve e le serie lineari, una teoria sviluppata vent'anni prima da Alexander Wilhelm ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. L'emergere della concezione strutturale in algebra
Leo Corry
L'emergere della concezione strutturale in algebra
Il punto di vista strutturale [...] in termini di gruppi di permutazioni ma soltanto in termini di equazioni algebriche, e che invece nel Traité appare già come un algebrici appartenenti all'anello, chiuso rispetto alle combinazioni lineari a coefficienti nell'anello. Hilbert cita in ...
Leggi Tutto
economia e matematica
economia e matematica Metodi matematici di varia complessità sono stati applicati all’analisi di problemi economici sin dagli albori dell’economia moderna. Ma se non sono certo [...] di spiegare la persistenza del ciclo per via puramente endogena. Se si usassero equazioni differenziali o alle differenze o miste, ma in ogni modo lineari, si avrebbero in generale oscillazioni smorzate o esplosive e si sarebbe quindi costretti ...
Leggi Tutto
LIBRI (Libri Carucci), Guglielmo
Livia Giacardi
Nacque a Firenze il 2 genn. 1802 da Giorgio, conte di Bagnano, e da Rosa Del Rosso, entrambi appartenenti a famiglie dell'antica nobiltà toscana. Per [...] ). Il merito principale del L. l'aver per primo attirato l'attenzione dei matematici sull'analogia fra le equazioni differenziali lineari e quelle algebriche, cosa che ha largamente determinato lo sviluppo della teoria nel XIX secolo. L'interesse per ...
Leggi Tutto
cervello, modelli per l’attività su larga scala del
Paolo Del Giudice
Maurizio Mattia
Il cervello esprime straordinarie capacità di elaborazione grazie all’azione coordinata, nello spazio e nel tempo, [...] il modello prende tipicamente la forma di un sistema di equazioni integro-differenziali, in cui la variazione istantanea di una delle , in cui la forma specifica dei termini non lineari della dinamica è dettata da considerazioni fenomenologiche, e i ...
Leggi Tutto
LEVI, Beppo
Salvatore Coen
Nacque a Torino il 14 maggio 1875 da Giulio Giacomo e Sara Diamantina (Mentina) Pugliese. Presso l'Università di Torino compì i suoi studi fino al conseguimento della laurea [...] Un altro importante lavoro (Un teorema del Minkowski sui sistemi di forme lineari a variabili intere, in Rend. del Circolo matematico di Palermo, XXXI occupandosi della teoria delle dimensioni fisiche, di equazioni utili all'elettrologia. Il L. ebbe ...
Leggi Tutto
CERRUTI, Valentino
Enzo Pozzato
Nacque a Crocemosso di Biella il 14 febbr. 1850, terzogenito di Agostino e di Angela Maria Cerruto. Conclusi brillantemente gli studi liceali e conseguita una borsa di [...] 3, II [1878], pp. 75 s.), Sopra unatrasformazione delle equazioni del moto di un puntomateriale (ibid, III [1879], pp. una proprietà degli integrali di un problema di meccanica che sono lineari rispetto alle componenti della velocità,ibid., s. 5, IV ...
Leggi Tutto
GRAFFI, Dario
Adriano Morando
Nacque il 10 genn. 1905 a Rovigo da Michele e da Amalia Tedeschi. Nella città natale frequentò la sezione fisico-matematica dell'istituto tecnico, diplomandosi nel 1921. [...] ], pp. 262-271; Sulle oscillazioni forzate nei sistemi non lineari a due gradi di libertà, in Rendiconti dell'Accademia dei Lincei la teoria dei circuiti dalla formulazione quasi-stazionaria delle equazioni di Maxwell. Il suo studio, esemplare per la ...
Leggi Tutto
sistema
sistèma s. m. [dal lat. tardo systema, gr. σύστημα, propr. «riunione, complesso» (da cui varî sign. estens.), der. di συνίστημι «porre insieme, riunire»] (pl. -i). – 1. Nell’ambito scientifico, qualsiasi oggetto di studio che, pur...
numero
nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...