wronskiano
wronskiano 〈vronskiano〉 [agg. Der. del cognome di J.M. Wronski-Hoene 〈vrònski hö´öne〉, matematico polacco (Poznam 1778 - Neuilly 1853)] [ANM] Per n funzioni di una variabile x, è il determinante [...] -1. L'utilità del w. si manifesta nella teoria delle equazioni differenziali omogenee di ordine n; in effetti, se f₁, ..., fn sono integrali particolari di una tale equazione, l'integrale generale è espresso da una combinazione lineare di f₁, ..., fn ...
Leggi Tutto
integro-differenziale
ìntegro-differenziale (o integrodifferenziale) [agg. Comp. di integrale e differenziale] [ANM] Equazione i.: quella nella quale la funzione incognita compare sia in derivate che [...] in integrali. Equazioni i. s'incontrano, per es., nell'analisi di circuiti elettrici non puramente resistivi; la via normale per la loro risoluzione è di derivarle, diventando così equazioni soltanto differenziali, e di proseguire quindi con i metodi ...
Leggi Tutto
equazione
equazióne s. f. [dal lat. aequatio -onis, der. di aequare «uguagliare»]. – Propr., uguaglianza, uguagliamento, pareggiamento. Il termine, raro con uso generico (si adopera tuttavia, a volte, nel linguaggio letter. e in frasi di tono...
integrale
agg. e s. m. [dal lat. tardo integralis, der. di intĕger «integro, intero»]. – 1. agg., non com. Di elemento che fa parte di un tutto, che concorre alla costituzione di un intero (sinon. quindi di integrante): i corpi i. del mondo...