L'Eta dei Lumi: matematica. I metodi numerici
Peter Schreiber
I metodi numerici
Il XVII sec. è stato in generale un 'secolo geometrico'. A parte alcune considerazioni di carattere puramente numerico, [...] i procedimenti dell'analisi numerica vera e propria. Per fare un esempio, per trovare le soluzioni di una classe di equazionidifferenziali, si può procedere in due modi: (a) determinare la funzione soluzione sotto forma di una formula, a partire da ...
Leggi Tutto
Atmosfera. Lo strato limite
Stefania Argentini
Gian Giuseppe Mastrantonio
Si definisce strato limite atmosferico (SLA) o strato limite planetario (SLP) la parte della troposfera direttamente influenzata [...] del vapore acqueo. La conservazione di queste grandezze dà origine a un sistema di equazionidifferenziali alle derivate parziali detto alle equazioni primitive, in quanto non presenta approssimazioni. Tale sistema permette di risolvere i moti ...
Leggi Tutto
Musica elettronica ed elettronica musicale
Lorenzo Seno
A partire dalla fine dell’Ottocento fino alla Seconda guerra mondiale, grazie alla diffusione dell’elettricità e dell’elettronica, fanno la loro [...] acustico è un oggetto fisico vibrante, della cui dinamica è possibile concepire un modello fisico-matematico basato su equazionidifferenziali del moto. La loro soluzione in tempo reale permetterebbe di fare ‘suonare’ il modello simulando l’oggetto ...
Leggi Tutto
Programmazione lineare
Robert Dorfman
di Robert Dorfman
Programmazione lineare
Introduzione
La programmazione lineare è una famiglia di metodi matematici per individuare i modi più redditizi o in [...] Pontryagin, è uno sviluppo della classica teoria di Eulero delle equazionidifferenziali di ottimizzazione. Le equazionidifferenziali di ottimizzazione cui essa arriva sono affini all'equazione di Bellman, ma non identiche. Entrambe queste teorie si ...
Leggi Tutto
La grande scienza. Calcolo delle variazioni
Gianni Dal Maso
Calcolo delle variazioni
Un problema di grande importanza nella matematica pura e applicata è la ricerca dei valori massimi o minimi di grandezze [...] per contorno le due circonferenze. Come vedremo, la funzione che realizza il minimo, quando esiste, deve soddisfare un'equazionedifferenziale, detta 'equazione di Euler', che in questo caso ha come soluzione esplicita le funzioni u(x)=(1/c1)cosh(c1x ...
Leggi Tutto
L'Ottocento: fisica. Meccanica dei continui e dei sistemi discreti
Craig G. Fraser
Meccanica dei continui e dei sistemi discreti
Origine dei concetti di sforzo e di deformazione
La teoria matematica [...] parziali di Hamilton-Jacobi del problema:
dove H=T+V, l'energia totale, è l'hamiltoniana del sistema. La [19] è un'equazionedifferenziale non lineare alle derivate parziali del primo ordine nelle variabili q1,q2,…,qn, t e S, in cui S non appare ...
Leggi Tutto
La grande scienza. Sistemi dinamici
Valentin S. Afraimovich
Leonid A. Bunimovich
Jack K. Hale
Sistemi dinamici
Il nostro Universo è formato da oggetti che si muovono nello spazio e le cui caratteristiche [...] )=(0,1), ω(x0)={1}, α(x0)={0}. Se x0>1 allora γ(x0)=(0,∞), ω(x0)={1}.
Una soluzione periodica p(t) di un'equazionedifferenziale
è una soluzione che ha la seguente proprietà: esiste T>0 tale che p(t+T)=p(t) per ogni t. Il minimo numero T con ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale
Jeremy Gray
Geometria differenziale
La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] quelle idee correggendo alcuni errori di Lie e di Killing. Tuttavia anche lui passò poi allo studio dei sistemi di equazionidifferenziali, che si avviavano a divenire una parte importante della più vasta analisi tensoriale.
Nel 1900 lo studio della ...
Leggi Tutto
L'Ottocento: astronomia. La meccanica celeste dopo Laplace: la teoria di Hamilton-Jacobi
Craig Fraser
Michiyo Nakane
La meccanica celeste dopo Laplace: la teoria di Hamilton-Jacobi
La teoria di Hamilton-Jacobi, [...] base della riuscita analisi delle anomalie nel sistema Giove-Saturno-Sole sviluppata da lui stesso e da Laplace in seguito.
Si consideri un'equazionedifferenziale ordinaria di ordine n:
[2] x(n)=P(t,x,x',x(2),...x(n-1);
si assuma di conoscerne una ...
Leggi Tutto
L'Eta dei Lumi: matematica. La matematica della teoria delle perturbazioni da Euler a Laplace
Curtis Wilson
La matematica della teoria delle perturbazioni da Euler a Laplace
Accanto allo sviluppo dei [...] moto di Saturno si fosse rivelata soddisfacente. Per mostrare come questo termine si manifesta, esprimiamo la parte relativa a y dell'equazionedifferenziale:
dove E′ è l'anomalia eccentrica di Giove, n è il rapporto dei moti medi e θ=φ′−φ. Se (θ ...
Leggi Tutto
equazione
equazióne s. f. [dal lat. aequatio -onis, der. di aequare «uguagliare»]. – Propr., uguaglianza, uguagliamento, pareggiamento. Il termine, raro con uso generico (si adopera tuttavia, a volte, nel linguaggio letter. e in frasi di tono...
elettromagnetismo
s. m. [comp. di elettro- e magnetismo; il termine compare dapprima nella forma gr. mod. ἠλεκτρομαγνητισμός come titolo del libro III, parte II, dell’opera Magnes sive de arte magnetica (1641) del padre A. Kircher]. – Parte...