sistema differenziale
sistema differenziale sistema di equazioni (o disequazioni) differenziali le cui soluzioni sono date dalle n-ple di funzioni che soddisfano tutte le formule differenziali che lo [...] e quindi nell’esempio è 4. Se un sistema di equazionidifferenziali è risolto rispetto alle derivate di ordine massimo, cioè esse xn+1 = t, cui corrisponde l’equazione x′n+1 = 1. Nei sistemi autonomi lineari la matrice A è costante. Se la matrice ...
Leggi Tutto
separazione delle variabili, metodo di
separazione delle variabili, metodo di metodo per la risoluzione di equazionidifferenziali alle derivate parziali lineari che consiste nei seguenti passi:
a) esprimere [...] serie due volte rispetto a x e una rispetto a t; la serie così ottenuta è una soluzione classica dell’equazionedifferenziale. Se tale prolungamento è meno regolare, la soluzione può essere ancora accettata in senso debole, in un opportuno spazio di ...
Leggi Tutto
equazione funzionale
equazione funzionale equazione in cui le incognite sono una o più funzioni. L’uguaglianza deve essere identicamente soddisfatta in un dominio assegnato, e la soluzione viene cercata [...] classe funzionale. A differenza del caso delle equazionidifferenziali, non c’è a priori una classe equazioni funzionali le seguenti equazioni:
• equazione di Cauchy: φ(x + y) = φ(x) + φ(y), le cui soluzioni continue sono le funzioni lineari ...
Leggi Tutto
omotopia
Luca Tomassini
Formalizzazione della nozione intuitiva di deformabilità di un’applicazione in un’altra. Più precisamente, due applicazioni f e g dello spazio topologico X nello spazio topologico [...] sfera n-dimensionale) riveste particolare importanza in quanto è allora possibile dotare l’insieme [Sn,X] di una struttura di gruppo: è questo il gruppo di omotopia (n-dimensionale) πn dello spazio X.
→ Equazionidifferenziali: problemi non lineari ...
Leggi Tutto
insiemi parzialmente ordinati
Luca Tomassini
Un insieme (o spazio) A sul quale sia definito un ordine parziale ≤, spesso detto anche poset. Un ordine parziale è una relazione binaria che soddisfa le [...] di generalizzare il concetto di successione a elementi indicizzati da insiemi non numerabili e non solo dagli interi ℕ e dunque la nozione di convergenza a spazi topologici generali.
→ Combinatoria; Equazionidifferenziali: problemi non lineari ...
Leggi Tutto
funzione di Green
Luca Tomassini
Una funzione legata alla rappresentazione tramite integrali di soluzioni di equazionidifferenziali (su una regione X⊂ℝ{[) con condizioni al bordo (della regione X, [...] calore e delle onde o di Klein-Gordon. In quest’ultimo caso a partire dalle funzioni di Green si costruiscono i propagatori di Feynmann, di fondamentale importanza nella teoria quantistica dei campi.
→ Equazionidifferenziali: problemi non lineari ...
Leggi Tutto
soluzioni deboli
Luca Tomassini
Consideriamo un operatore differenziale lineare
definito su un aperto connesso A di ℝn, dove le ak(x) sono funzioni su A sufficientemente regolari (per es. differenziabili [...] molto irregolare, è in realtà derivabile un numero sufficiente di volte. Per es., nel caso delle equazioni cosiddette ellittiche ogni soluzione debole è anche forte.
→ Equazionidifferenziali: problemi non lineari; Matematica: problemi aperti ...
Leggi Tutto
teorema della divergenza
Luca Tomassini
Una formula nel calcolo di integrali multipli di funzioni di più variabili che stabilisce un legame tra un integrale (di volume) su un dominio n-dimensionale [...] nel pozzo) nell’unità di tempo. Il teorema della divergenza afferma allora che, poiché il fluido è incompressibile, una pari quantità di esso dovrà uscire (entrare) attraverso il bordo della regione G.
→ Equazionidifferenziali: problemi non lineari ...
Leggi Tutto
integrale di linea
integrale di linea integrale il cui insieme di definizione è una linea Γ che si può in prima istanza supporre regolare (→ curva). Vi sono due tipi di integrali di linea: a) gli integrali [...] nell’ascissa curvilinea; b) quelli di forme differenzialilineari.
Nel caso a), l’integrale di una funzione ƒ(x) continua per x ∈ Γ, dove Γ è una linea regolare definita dalle equazioni parametriche x = x(s) nell’ascissa curvilinea s, s ∈ [0, L], è ...
Leggi Tutto
Jacobi
Jacobi Carl Gustav Jacob (Potsdam, Brandeburgo, 1804 - Berlino 1851) matematico tedesco. Dopo essersi laureato a Berlino, insegnò matematica a Berlino e all’università di Königsberg, dove strinse [...] di Berlino e di Parigi e della Royal Society. I suoi lavori riguardano essenzialmente le equazionidifferenziali, i sistemi di equazionilineari, la teoria dei determinanti e, dal 1829 (contemporaneamente alle ricerche di N. Abel), lo studio ...
Leggi Tutto
sovrapposizione
sovrappoṡizióne (meno com. soprappoṡizióne) s. f. [der. di sovrapporre, soprapporre]. – 1. L’atto, l’operazione di sovrapporre; il sovrapporsi, l’essersi sovrapposto: s. di due figure; s. d’immagini in una fotografia; in senso...
wronskiano
〈vro-〉 agg. e s. m. – Che si riferisce al matematico polacco J. M. Wroński-Hoene (1778-1853). Determinante w., o semplicem. wronskiano, di n funzioni in una variabile x, è il determinante della matrice quadrata avente le varie righe...