L'Eta dei Lumi: matematica. Meccanica variazionale
Helmut Pulte
Rüdiger Thiele
Meccanica variazionale
Le locuzioni 'meccanica classica' e 'meccanica newtoniana' sono, tradizionalmente, usate come sinonimi. [...] la determinazione del moto di punti materiali a una "questione di puro calcolo". Da essa ricava anche le famose 'equazioni lagrangiane del moto'.
Il principio delle velocità virtuali assume importanza nella Méchanique analitique diLagrange ‒ e in ...
Leggi Tutto
potenziale
potenziale [agg. e s.m. Der. del lat. potentialis, da potentia "potenza"] [LSF] (a) In contrapp. ad attuale, di ciò che ha la capacità di esplicarsi in qualcosa, ma non attuandosi ancora. [...] finire del 18° sec. e per gran parte del 19° sec., da G.L. Lagrange a P.S. Laplace, S.-D. Poisson, G. Green, K.F. Gauss ( : V=Q(1+R₀R₀(2c2)+...)/(4πε₀R₀). Le equazionidi Maxwell, oltre alla soluzione corrispondente ai p. ritardati ammettono anche ...
Leggi Tutto
Helmholtz Hermann Ludwig Ferdinand von
Helmholtz 〈hèlmolz〉 Hermann Ludwig Ferdinand von [STF] (Potsdam 1821 - Berlino 1894) Prof. di fisiologia nell'univ. di Königsberg (1849) e di anatomia e fisiologia [...] ◆ [ANM] Equazione unidimensionale di H.: v. equazioni differenziali alle derivate parziali: II 440 a. ◆ [MCC] Funzione di H.: lo stesso che energia libera di H. (v. sopra). ◆ [OTT] Invariante diLagrange-H., o di Smith-H.: → Lagrange, Giuseppe Luigi ...
Leggi Tutto
parentesi
parèntesi [Der. del lat. parenthesis, dal gr. parénthesis "inserzione", a sua volta comp. di pará "para-2", én "in" e títhemi "porre"] [ALG] [ANM] Simboli grafici, di varia forma e con particolari [...] P. algebriche); per le p. con nome proprio (p. diLagrange, di Poisson, ecc.), si rinvia al nome. ◆ P. ad equazioni dimensionali e unità di misura (come in questa Enciclopedia). ◆ [FSD] P. tonde: nella cristallografia, racchiudono i tre indici di ...
Leggi Tutto
principio variazionale
Daniele Cassani
Corrispondenza tra le soluzioni di un’assegnata equazione differenziale e i punti critici di un opportuno funzionale. I modelli della fisica matematica sono essenzialmente [...] (o funzionale energia). Per es., le equazioni del moto di un sistema di k particelle di massa mj e con posizione assegnata al tempo t da xj(t)∈ℝ3, j=1,...,k, sono ottenute come equazionidi Euler-Lagrange relative al funzionale
dove U rappresenta l ...
Leggi Tutto
Ogni concezione che consideri l’accadere, tanto fisico quanto spirituale, come il prodotto di una pura causalità meccanica e non preordinato a una superiore finalità.
Filosofia
Nel senso più generale, [...] della termodinamica (Clausius, 1850) mise chiaramente in luce l’irreversibilità di tutti i fenomeni naturali, laddove le equazioni dinamiche diLagrange rispecchiano un andamento assolutamente reversibile. Così, lo schema meccanicistico, mentre ...
Leggi Tutto
Fisico matematico (Southport 1873 - Edimburgo 1956), prof. di meccanica nell'univ. di Edimburgo (dal 1912), socio straniero dei Lincei (1922), accademico pontificio (1936). È stato tra i più eminenti cultori [...] matematica (sull'analisi armonica, sulle funzioni integrali e sulle equazioni differenziali alle derivate parziali, sulla soluzione generale dell'equazionedi Laplace, ecc.). Altri suoi studî riguardano la spettroscopia, l'ottica, la relatività ...
Leggi Tutto
L'Eta dei Lumi: matematica. La meccanica del continuo
James Cross
La meccanica del continuo
La trattazione della meccanica del continuo nel XVIII sec., in particolare dell'elasticità e della meccanica [...] ma vediamo che ora Euler determina in molti casi, semplici e meno semplici, la soluzione generale diequazioni differenziali lineari a coefficienti costanti. Lagrange nel 1759 fornì le soluzioni esplicite per una corda sotto carico, ma si confuse al ...
Leggi Tutto
L'Eta dei Lumi: matematica. Le tradizioni principali della meccanica
Ivor Grattan-Guinness
Le tradizioni principali della meccanica
Branche della meccanica
La meccanica, nel suo ampio spettro di usi, [...] lo 'spirito' della meccanica: per esempio, nelle equazionidi Euler per la rotazione di un corpo continuo i momenti d'inerzia comparivano come costanti di un'integrazione parziale. L'approccio diLagrange costituiva in primo luogo un procedimento ...
Leggi Tutto
L'Eta dei Lumi: matematica. I Principia di Newton nel Settecento
Niccolò Guicciardini
I Principia di Newton nel Settecento
Nel 1687 furono pubblicati a Londra i Principia di Newton. Quest'opera è oggi [...] sostenere, offrendo una risoluzione nei termini dell'integrazione di un'equazione differenziale in coordinate polari, che lui, e non diLagrange.
La meccanica dei 'Principia'
I Principia di Newton sono fondati sui tre "assiomi o leggi del moto" di ...
Leggi Tutto
lagrangiano
agg. – Che si riferisce o è dovuto al matematico G. L. Lagrange (1736-1813). Nella meccanica analitica, coordinate l., parametri arbitrarî di numero finito (uguale al numero dei gradi di libertà) che determinano completamente la...