La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale
Angus E. Taylor
Le origini dell'analisi funzionale
L'analisi funzionale acquista una precisa identità nel [...] di D(λ), l'equazione [5] con g=0 ammette un numero finito didi Leonhard Euler (1707-1783), prima, e di Joseph-Louis Lagrange (1736-1813), dopo. Ma se si conviene di far coincidere il sorgere di una teoria con l’opera di chi ha manifestato di ...
Leggi Tutto
Analisi matematica
Jean A. Dieudonné
Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] necessarie e sufficienti per l'esistenza di una soluzione di U∙x=y (corrispondente alle equazioni integrali di prima specie per l'operatore [ di Leonhard Euler e Joseph-Louis Lagrange consisteva nell'ammettere per ipotesi l'esistenza nell'insieme A di ...
Leggi Tutto
L'Ottocento: matematica. Equazioni differenziali ordinarie
Jeremy Gray
Equazioni differenziali ordinarie
Variabili reali
Durante il XVIII sec. i matematici avevano risolto un numero crescente diequazioni [...] del primo ordine
Nel XVIII sec. d'Alembert e Lagrange avevano studiato i sistemi diequazioni differenziali nel caso particolare di coefficienti aij costanti, nella speranza di individuare combinazioni lineari delle funzioni originali per le quali ...
Leggi Tutto
Legendre Adrien-Marie
Legendre 〈lëgŠàndr〉 Adrien-Marie [STF] (Tolosa 1752 - Parigi 1833) Prof. di matematica nell'École militaire di Parigi (1775); passò a dirigere, nel Bureau des longitudes (1787), [...] L. Lagrange (1812); da ultimo insegnò matematica nell'École Polytechnique (1816). ◆ [ANM] Condizione di L.: condizione necessaria di minimo per soluzioni estremali di problemi variazionali: v. variazioni, calcolo delle: VI 463 f. ◆ [ANM] Equazionedi ...
Leggi Tutto
equazionedi Euler-Lagrange
Daniele Cassani
Per funzioni reali di variabile reale f: ℝ→ℝ una condizione necessaria per avere un massimo o un minimo in un punto x0 dove f è derivabile, è che x0 risolva [...] per il funzionale F, è che z risolva l’equazionedi Euler-Lagrange
Al di là dell’analogia con la precedente, l’importanza di questa equazione differenziale (che si estende al caso di funzionali più generali) risiede nella corrispondenza che s ...
Leggi Tutto
lagrangiano
agg. – Che si riferisce o è dovuto al matematico G. L. Lagrange (1736-1813). Nella meccanica analitica, coordinate l., parametri arbitrarî di numero finito (uguale al numero dei gradi di libertà) che determinano completamente la...