• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
lingua italiana
55 risultati
Tutti i risultati [127]
Matematica [55]
Fisica [43]
Fisica matematica [25]
Algebra [18]
Storia della fisica [18]
Meccanica [16]
Meccanica dei fluidi [15]
Analisi matematica [15]
Meccanica quantistica [14]
Storia della matematica [14]

Eulero

Dizionario delle Scienze Fisiche (1996)

Eulero Eulèro [STF] Forma italianizz. assai frequente del cognome di L. Euler. ◆ [ALG] [MCC] Angoli di E.: terna di angoli con cui s'individua l'orientamento di un solido intorno a un punto o, che è [...] : I 193 b. ◆ [MCC] Equazioni di E. del moto rigido in forma scalare: le equazioni generali del moto di un corpo rigido: v. moto, costanti del: IV 122 a. ◆ [MCF] Equazioni di E. fluidodinamiche: le equazioni generali del campo di velocità in un fluido ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – GEOFISICA – MECCANICA – MECCANICA QUANTISTICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – TERMODINAMICA E TERMOLOGIA – ALGEBRA – ANALISI MATEMATICA

matrice

Enciclopedia on line

Anatomia Ammasso di cellule epiteliali alla cui attività si deve la formazione di un tessuto. M. dell’unghia L’ammasso di cellule dello strato onicogeno che si osserva in corrispondenza della radice dell’unghia [...] per A oppure per BAB–1, essendo B una qualunque m. non singolare. Ogni m. soddisfa alla propria equazione caratteristica (teorema di Cayley-Hamilton). Forma canonica di una matrice Limitiamoci ad alcuni casi tipici: a) una m. A a elementi interi ... Leggi Tutto
CATEGORIA: ANTROPOLOGIA FISICA – BIOINGEGNERIA – BIOLOGIA MOLECOLARE – CITOLOGIA – ANATOMIA MORFOLOGIA CITOLOGIA – FISICA MATEMATICA – FISICA NUCLEARE – ANALISI MATEMATICA – ANATOMIA – INDUSTRIA GRAFICA – MECCANICA APPLICATA – STRUMENTI E TECNOLOGIA APPLICATA
TAGS: EQUAZIONE DIFFERENZIALE OMOGENEA – EQUAZIONI DIFFERENZIALI LINEARI – SISTEMI DI EQUAZIONI LINEARI – POLINOMIO CARATTERISTICO – TABELLE A DOPPIA ENTRATA
Mostra altri risultati Nascondi altri risultati su matrice (5)
Mostra Tutti

tensore

Enciclopedia on line

Anatomia Muscolo volontario o involontario che ha la funzione di tendere un organo o una formazione anatomica: t. del palato, contrae il palato molle; t. del tarso, nell’orbita, comprime i punti lacrimali [...] Se si considera un arco di curva regolare di MN, di equazione xr=xr(u), si chiama derivata assoluta di un campo di t. Trpq(u), definito lungo la curva, il tensore D dxh −−−−Trpq = ∇hTrpq −−−−. Du du T. di Riemann di una varietà Il calcolo tensoriale ... Leggi Tutto
CATEGORIA: TEMI GENERALI
TAGS: CAMBIAMENTO DI COORDINATE – CORRISPONDENZA BIUNIVOCA – VARIETÀ DIFFERENZIABILE – TEORIA DELLA RELATIVITÀ – EQUAZIONI DIFFERENZIALI
Mostra altri risultati Nascondi altri risultati su tensore (4)
Mostra Tutti

quaternione

Enciclopedia on line

Particolare tipo di numeri che rappresentano una generalizzazione dei numeri complessi. I q. costituiscono un corpo non commutativo e un’algebra non commutativa sul campo dei numeri reali. Introdotti da [...] W.R. Hamilton nel 1843, hanno trovato numerose applicazioni in vari campi della matematica. Nell’algebra dei q., che si indica per solito con il proprietà dell’algebra H è di essere un’algebra con divisione: ciò significa che le equazioni qx=q′ e yq=q ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: CALCOLO INFINITESIMALE – CORPO NON COMMUTATIVO – STRUTTURA TOPOLOGICA – EQUAZIONE ALGEBRICA – SPAZIO TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su quaternione (3)
Mostra Tutti

La grande scienza. Cronologia scientifica: 1971-1980

Storia della Scienza (2003)

La grande scienza. Cronologia scientifica: 1971-1980 1971-1980 1971 I problemi NP-completi. L'informatico americano Stephen Cook dà il primo esempio di problema algoritmico NP-completo. La classe NP [...] teoria dell'interpolazione. Questa teoria, di grande importanza nello studio delle equazioni alle derivate parziali e nell'analisi Svizzera, Universität Basel, Daniel Nathans, USA, e Hamilton Othanel Smith, USA, entrambi della Johns Hopkins University ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – ANTROPOLOGIA FISICA – BIOCHIMICA – STORIA DELLA BIOLOGIA – CHIMICA FISICA – STORIA DELLA CHIMICA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA

L'Età dei Lumi: matematica. La matematica della teoria delle perturbazioni da Euler a Laplace

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. La matematica della teoria delle perturbazioni da Euler a Laplace Curtis Wilson La matematica della teoria delle perturbazioni da Euler a Laplace Accanto allo sviluppo dei [...] Ω è nulla, la [17] fornisce che può essere considerata come l'equazione di una fissata ellisse con parametro f2/M, eccentricità (g2+h2)1/2 contributi innovativi da parte di Peter Andreas Hansen, William Rowan Hamilton, Carl Gustav Jacob Jacobi ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA

Invarianti, Teoria degli

Enciclopedia della Scienza e della Tecnica (2007)

Invarianti, Teoria degli Claudio Procesi La geometria proiettiva, e le geometrie non euclidee, ebbero un grande impatto sul pensiero algebrico e geometrico del secolo scorso. Le idee scaturite da questa [...] coordinate proiettive, una forma algebrica rappresenta l'equazione di una (iper)-superficie nello spazio proiettivo a n di Cayley-Hamilton. Tali invarianti sono parametri per classi di isomorfismo di rappresentazioni e si utilizzano per lo studio di ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: DOMINIO A FATTORIZZAZIONE UNICA – TEORIA DELLE RAPPRESENTAZIONI – TEOREMA DI CAYLEY-HAMILTON – CORRISPONDENZA BIUNIVOCA – SEGNO DELLA PERMUTAZIONE
Mostra altri risultati Nascondi altri risultati su Invarianti, Teoria degli (6)
Mostra Tutti

Peano, Giuseppe

Il Contributo italiano alla storia del Pensiero: Scienze (2013)

Giuseppe Peano Clara Silvia Roero Negli ultimi decenni dell’Ottocento e nei primi del Novecento le ricerche matematiche, logiche e linguistiche di Giuseppe Peano ebbero una straordinaria eco internazionale. [...] delle scienze di Torino e sui «Mathematische Annalen». Si trattava di un gruppo di note sulle equazioni differenziali ordinarie di William Rowan Hamilton (1805-1865) sui quaternioni, di August Ferdinand Möbius (1790-1868) sul calcolo baricentrico e di ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: ACCADEMIA DELLE SCIENZE DI TORINO – GOTTFRIED WILHELM VON LEIBNIZ – FUNZIONE DI PIÙ VARIABILI – GIUSEPPE LOMBARDO RADICE – GEOMETRIA DIFFERENZIALE
Mostra altri risultati Nascondi altri risultati su Peano, Giuseppe (6)
Mostra Tutti

Boscovich, Ruggero Giuseppe

Il Contributo italiano alla storia del Pensiero: Scienze (2013)

Ruggero Giuseppe Boscovich Pasquale Tucci Nato in Dalmazia da padre serbo, si formò e operò in Italia, dove fu tra i primi a promuovere la diffusione e la discussione critica del newtonianesimo. Nell’opera [...] diverse nel calcolo e nelle equazioni differenziali. Egli non fu quindi in grado di matematizzare la sua fisica. Tuttavia ha ricostruito le modalità della diffusione delle idee di Boscovich in Scozia. Hamilton (1805-1865) fu uno dei più importanti ... Leggi Tutto
CATEGORIA: BIOGRAFIE – FISICA MATEMATICA
TAGS: OSSERVATORIO ASTRONOMICO DI BRERA – INDEX LIBRORUM PROHIBITORUM – ATTRAZIONE GRAVITAZIONALE – GIOVANNI DOMENICO CASSINI – OSSERVATORIO ASTRONOMICO
Mostra altri risultati Nascondi altri risultati su Boscovich, Ruggero Giuseppe (4)
Mostra Tutti

algebra non commutativa

Enciclopedia della Scienza e della Tecnica (2008)

algebra non commutativa Luca Tomassini Sia F un campo, ovvero un corpo commutativo. Un insieme A è detto F-algebra (o algebra su F) se è uno spazio vettoriale sul campo F (per es., i campi ℚ, ℝ, ℂ dei [...] elaborazione dell’algebra lineare, ovvero allo studio dei sistemi di equazioni lineari, e in particolare al nome del matematico inglese William R. Hamilton. Un esempio fondamentale di algebra (associativa ma non commutativa) è infatti costituito dall ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEORIA DELLE RAPPRESENTAZIONI – APPLICAZIONI LINEARI – SPAZIO VETTORIALE – ALGEBRA LINEARE – ALGEBRE DI LIE
Mostra altri risultati Nascondi altri risultati su algebra non commutativa (4)
Mostra Tutti
1 2 3 4 5 6
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali