Nodi e fisica
Louis H. Kauffman
Sommario: 1. Introduzione. 2. Come fissare un nodo: le mosse di Reidemeister. 3. Invarianti di nodi e links: un primo passo. 4. Il polinomio di Jones. 5. Il polinomio [...] sta a cuore: vorremmo poter calcolare numeri (o entità algebriche come polinomi) a partire da un qualsiasi diagramma di ottenga in corrispondenza a funzioni d'onda {ψk} che soddisfano l'equazione di Schrödinger e per cui Eψk = Ekψk. Un ‛osservabile' ...
Leggi Tutto
Numeri, teoria dei
Larry Joel Goldstein
La teoria dei numeri è il settore della matematica dedicato allo studio delle proprietà degli interi, cioè dell'insieme ℤ costituito dai numeri
…, −4, −3, −2, [...] ; π ed e, invece, non lo sono. In altre parole π ed e non sono radici di nessuna equazionealgebrica a coefficienti razionali. Numeri siffatti sono chiamati trascendenti.
Un ramo della teoria dei numeri si occupa dello studio delle proprietà dei ...
Leggi Tutto
L'Eta dei Lumi: matematica. Le equazioni differenziali
Silvia Mazzone
Clara Silvia Roero
Le equazioni differenziali
E con la nascita del calcolo infinitesimale di Newton e di Leibniz, nella seconda [...] effettuata ed è possibile determinare in modo algebrico oppure per quadrature sia z sia m e, di conseguenza, anche la funzione incognita y.
Tra gli artifici ideati dai primi studiosi delle equazioni differenziali e contenuti nelle lezioni date ai ...
Leggi Tutto
La grande scienza. Geometria numerativa e invarianti di Gromov-Witten
Enrico Arbarello
Geometria numerativa e invarianti di Gromov-Witten
Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] caso reale, tutto è più semplice perché si sa disegnare il grafico di un'equazionealgebrica. Nel disegnare il grafico della stessa equazione nel piano complesso bidimensionale, si deve visualizzare una superficie bidimensionale reale in uno spazio ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] p. 66)
Il quarto capitolo presenta la teoria delle equazioni differenziali per le funzioni vettoriali. Si stabiliscono i teoremi topologia di Zariski.
Il terzo capitolo è dedicato alle algebre graduate di tipo finito e agli anelli e moduli filtrati ...
Leggi Tutto
L'Eta dei Lumi: matematica. I metodi numerici
Peter Schreiber
I metodi numerici
Il XVII sec. è stato in generale un 'secolo geometrico'. A parte alcune considerazioni di carattere puramente numerico, [...] che trattano di procedimenti numerici per la soluzione di equazioni. Se si lascia da parte tutto ciò che oggi definiamo 'algebrico', ci si trova davanti alla soluzione numerica di un'equazione in un'incognita, cioè in linguaggio moderno alla ricerca ...
Leggi Tutto
Programmazione lineare
Robert Dorfman
di Robert Dorfman
Programmazione lineare
Introduzione
La programmazione lineare è una famiglia di metodi matematici per individuare i modi più redditizi o in [...] , per ogni attività j, o
Moltiplicando entrambi i membri dell'equazione per xj si ottiene un'eguaglianza, sia che Σi aij pi sia perché si fonda sul concetto matematico di base. Nell'algebra delle matrici e dei vettori si definisce base di uno spazio ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica
Jeremy Gray
Geometria algebrica
Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] superiore. L'intuizione era però così profonda che per lungo tempo fu respinta a vantaggio di metodi più algebrici che partono dall'equazione della curva. Mentre le idee di campo di funzioni e di divisori erano adeguate a formulare una teoria ...
Leggi Tutto
Numeri
Umberto Zannier
Quanti? Quanto? Quando? A che distanza? Domande a cui rispondiamo, di solito, con numeri. Di essi facciamo continuo uso, e l’importanza concettuale, oltre che pratica, della nozione [...] che i numeri complessi sono sufficienti per risolvere qualsiasi equazionealgebrica; in altre parole, i numeri reali e l’equazione x2=−1, alquanto speciale, bastano per risolvere tutte le altre equazioni, di grado arbitrario. I primi risultati in tal ...
Leggi Tutto
L'Eta dei Lumi: matematica. La teoria dei numeri
Günther Frei
La teoria dei numeri
La teoria dei numeri (o aritmetica) tratta delle proprietà dei numeri. Lungo tutta la sua storia, un tema dominante [...] con essa nulla a che fare, a parte il fatto di aver commentato un libro di algebra del matematico svizzero Johann Heinrich Rahn in cui compariva questa equazione (1659). Essa è presente comunque già nell'Arithmetica di Diofanto (V.9 e V.11). Alcune ...
Leggi Tutto
equazione
equazióne s. f. [dal lat. aequatio -onis, der. di aequare «uguagliare»]. – Propr., uguaglianza, uguagliamento, pareggiamento. Il termine, raro con uso generico (si adopera tuttavia, a volte, nel linguaggio letter. e in frasi di tono...
algebra
àlgebra s. f. [dal lat. mediev. algebra, e questo dall’arabo al-giabr, propr. «restaurazione», e quindi «riduzione» (dapprima nel sign. medico-chirurgico, e poi in quello matematico), che compare la prima volta in un trattato arabo...