Scienza greco-romana. Euclide e la matematica del IV secolo
Reviel Netz
Euclide e la matematica del IV secolo
Sappiamo del IV sec. a.C. più di quanto non sappiamo del V, ma è sempre molto poco. Fra [...] e aree. L’interesse di fondo resta tuttavia di natura geometrica e non riguarda le equazioni in quanto tali; eviteremo perciò di usare l’espressione ‘algebra geometrica’.
Dopo le due definizioni il libro passa alla serie delle proposizioni, che sono ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. Trigonometria
Marie-Thérèse Debarnot
Trigonometria
Dalla geometria alla trigonometria
La trigonometria, scienza ausiliaria dello studio [...] una riduzione bi-'l-ǧabr wa-'l-muqābala (trattamento algebrico che serve soltanto a semplificare le equazioni ottenute per via geometrica), alle equazioni
vale a dire, a due forme dell'equazione della trisezione. È in questo contesto generale che è ...
Leggi Tutto
L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea
Jeremy Gray
Dalla geometria proiettiva alla geometria euclidea
La geometria proiettiva
La carriera del matematico francese [...] 'opera di Klein e di Clebsch si deve, tuttavia, considerare lo studio delle superfici algebriche.
Una superficie algebrica nello spazio è definita da un'equazione polinomiale in tre variabili. Gli esempi meglio studiati nel corso della prima metà del ...
Leggi Tutto
La scienza presso le civilta precolombiane. Pratiche di calcolo nell'antica Mesoamerica
John S. Justeson
Pratiche di calcolo nell'antica Mesoamerica
La matematica mesoamericana si è sviluppata al di [...] moltiplicatore di una delle potenze della base; se nell'espressione algebrica uno dei coefficienti ci associati alla corrispondente potenza bi fosse cioè, in sistemi matematici non basati su equazioni astratte con variabili, bensì su schemi per ...
Leggi Tutto
L'Ottocento: matematica. Teoria dei numeri
Catherine Goldstein
Teoria dei numeri
Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] ci si limita ai numeri della forma a+b√5, con a e b interi ordinari, risulta che, (1+√5)/2 è radice dell'equazionealgebrica x2−x−1=0, la quale ha coefficiente direttore uguale a 1: malgrado il denominatore 2 che vi compare, tale radice deve essere ...
Leggi Tutto
L'Ottocento: matematica. Il rigore in analisi
Umberto Botta
Il rigore in analisi
L'eredità di Lagrange
All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] . La concezione 'algebrica' di Lagrange permetteva di trattare dallo stesso punto di vista non soltanto i fondamenti del calcolo, ma anche le sue applicazioni alla geometria, alla meccanica e alla teoria delle equazioni differenziali. Quest'ultima ...
Leggi Tutto
La grande scienza. Geometria non commutativa
Alain Connes
Geometria non commutativa
Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] Tale distanza è data da:
dove D=ds−1 e A è l'algebra delle funzioni lisce. Si osservi che ds ha la dimensione di una lunghezza, è duplice: da un lato, definisce la metrica mediante l'equazione [68], dall'altro la sua classe di omotopia rappresenta ...
Leggi Tutto
Vicino Oriente antico. La matematica
Jöran Friberg
La matematica
Gli esercizi metro-matematici nel III millennio
La ricerca sulla matematica mesopotamica conobbe il suo periodo pionieristico a partire [...] lungo è stato ritenuto dagli storici della matematica babilonese che le procedure di risoluzione per tali sistemi di equazioni fossero basate su identità algebriche del tipo della regola quadratica del mezzo termine, cioè □[(u+s)/2]−□[(u−s)/2]=us, e ...
Leggi Tutto
L'Universo matematico
John D. Barrow
(Astronomy Centre, University of Sussex, Brighton, Gran Bretagna)
Parte di questo saggio è stata pubblicata sotto il titolo Perché il mondo è matematico? Roma-Bari, [...] , che fu il primo a fare un uso sistematico dei simboli algebrici, usando simboli speciali per le quantità incognite, i reciproci e le potenze dei numeri, e che risolse molte equazioni di questo tipo. Questi problemi hanno più di una soluzione ...
Leggi Tutto
La grande scienza. Combinatoria
Peter J. Cameron
Combinatoria
Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri essa non rappresenta una branca separata, [...] discretezza viene appianata, ed è per questo che le equazioni differenziali danno una buona descrizione dell'Universo. La 1990. L'incontro tra le sue ricerche sulle tracce delle algebre di von Neumann e le rappresentazioni del gruppo delle trecce di ...
Leggi Tutto
equazione
equazióne s. f. [dal lat. aequatio -onis, der. di aequare «uguagliare»]. – Propr., uguaglianza, uguagliamento, pareggiamento. Il termine, raro con uso generico (si adopera tuttavia, a volte, nel linguaggio letter. e in frasi di tono...
algebra
àlgebra s. f. [dal lat. mediev. algebra, e questo dall’arabo al-giabr, propr. «restaurazione», e quindi «riduzione» (dapprima nel sign. medico-chirurgico, e poi in quello matematico), che compare la prima volta in un trattato arabo...