• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
32 risultati
Tutti i risultati [376]
Storia della matematica [32]
Matematica [162]
Fisica [85]
Analisi matematica [43]
Fisica matematica [39]
Biografie [40]
Temi generali [37]
Algebra [28]
Biologia [26]
Chimica [24]

L'Ottocento: matematica. Le origini della teoria dei gruppi

Storia della Scienza (2003)

L'Ottocento: matematica. Le origini della teoria dei gruppi Jeremy Gray Le origini della teoria dei gruppi La teoria di Galois e la soluzione algebrica delle equazioni algebriche La teoria di Galois [...] e Vessiot. Prima di allora Picard, ispirandosi alle teorie di Lie, aveva elaborato una teoria di Galois delle equazioni differenziali lineari ordinarie; il suo lavoro fu sviluppato da Vessiot dopo il suo ritorno dalla Germania (Gray 1985). Darboux e ... Leggi Tutto
CATEGORIA: ALGEBRA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea

Storia della Scienza (2003)

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea Jeremy Gray Dalla geometria proiettiva alla geometria euclidea La geometria proiettiva La carriera del matematico francese [...] alle derivate parziali, quando l'Académie des Sciences di Parigi bandì un concorso sulle equazioni differenziali lineari nel dominio complesso. Poincaré raccolse la sfida e presentò un saggio nel quale prendeva in esame e rielaborava alcune idee ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. Le equazioni differenziali

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Le equazioni differenziali Silvia Mazzone Clara Silvia Roero Le equazioni differenziali E con la nascita del calcolo infinitesimale di Newton e di Leibniz, nella seconda [...] e Jakob I Bernoulli. Negli anni Sessanta sia d'Alembert sia Lagrange gettano le basi della teoria delle equazioni differenziali lineari a coefficienti non costanti e, con metodi diversi, arrivano alla loro risoluzione. Nel carteggio con Lagrange del ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo Jean-Paul Pier Il Bourbakismo L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] vettoriali. Si stabiliscono i teoremi di esistenza e di unicità; sono studiate in modo particolare le equazioni e i sistemi di equazioni differenziali lineari. Il quinto capitolo sviluppa lo studio locale di una funzione. Si spiegano le relazioni di ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. La matematica della teoria delle perturbazioni da Euler a Laplace

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. La matematica della teoria delle perturbazioni da Euler a Laplace Curtis Wilson La matematica della teoria delle perturbazioni da Euler a Laplace Accanto allo sviluppo dei [...] , k=e cosL, dove e è l'eccentricità e L la longitudine dell'afelio, sarebbe stato possibile ottenere e risolvere equazioni differenziali lineari del primo ordine in dh/dt e dk/dt per i vari pianeti del Sistema solare. Lagrange stesso aveva previsto ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Metodi del calcolo numerico

Storia della Scienza (2003)

L'Ottocento: matematica. Metodi del calcolo numerico Dominique Tournès Metodi del calcolo numerico Prima del 1870 l'analisi numerica non si era ancora sviluppata come disciplina autonoma; esisteva [...] di questo metodo di approssimazioni successive e danno una valutazione dell'errore, ma soltanto nel caso delle equazioni differenziali lineari. Il caso generale sarà affrontato dal punto di vista teorico soltanto alla fine del XIX secolo. Un ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Teoria dei sistemi e controllo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Teoria dei sistemi e controllo Mark Aizerman Teoria dei sistemi e controllo La teoria del controllo si è formata, come campo di ricerca indipendente, [...] di controllo La nozione di qualità del processo di controllo riguarda l'insieme di certi parametri caratteristici delle corrispondenti equazioni differenziali lineari (per es., lo schema in fig. 2) nel caso in cui su alcuni elementi dello schema stia ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

L'Ottocento: matematica. Equazioni differenziali ordinarie

Storia della Scienza (2003)

L'Ottocento: matematica. Equazioni differenziali ordinarie Jeremy Gray Equazioni differenziali ordinarie Variabili reali Durante il XVIII sec. i matematici avevano risolto un numero crescente di equazioni [...] f(z0) né 1/f(z0) possono essere definiti. Fuchs cercò quindi di determinare quali fossero le equazioni differenziali lineari ordinarie che ammettevano soluzioni che, nel caso peggiore, avessero punti di diramazione e poli logaritmici ma nessun punto ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. I problemi di Hilbert e la matematica del nuovo secolo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. I problemi di Hilbert e la matematica del nuovo secolo David E. Rowe I problemi di Hilbert e la matematica del nuovo secolo Problemi matematici [...] geometria, la teoria dei gruppi, le superfici di Riemann e la teoria di Galois con la teoria delle equazioni differenziali lineari. Hilbert concepiva i problemi matematici in termini dinamici piuttosto che statici. Egli vedeva il loro ruolo, il loro ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA
1 2 3 4
Vocabolario
sovrappoṡizióne
sovrapposizione sovrappoṡizióne (meno com. soprappoṡizióne) s. f. [der. di sovrapporre, soprapporre]. – 1. L’atto, l’operazione di sovrapporre; il sovrapporsi, l’essersi sovrapposto: s. di due figure; s. d’immagini in una fotografia; in senso...
wronskiano
wronskiano 〈vro-〉 agg. e s. m. – Che si riferisce al matematico polacco J. M. Wroński-Hoene (1778-1853). Determinante w., o semplicem. wronskiano, di n funzioni in una variabile x, è il determinante della matrice quadrata avente le varie righe...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali