L'Ottocento: matematica. Equazioni differenziali alle derivateparziali
Thomas Archibald
Equazioni differenziali alle derivateparziali
Nel corso del XIX sec. la teoria delle funzioni di più variabili [...] della teoria del potenziale, una disciplina che non è totalmente inscrivibile in quella delle equazioni alle derivateparziali.
Tali importanti equazioni alle derivateparziali della fisica sono, per la maggior parte, del secondo ordine e lineari, a ...
Leggi Tutto
Biologia
C. morfogenetico Area dell’embrione, o del primordio di un germoglio, dotata della capacità di dare origine a un determinato organo; per es., i c. morfogenetici dell’arto posteriore danno origine [...] vy, vz del vettore v del c. coincidono con le derivateparziali di una medesima funzione monodroma, U, del posto, detta ̅ è il cosiddetto c. dei numeri algebrici (radici di equazioni a coefficienti razionali). Dire che non tutti i numeri reali ...
Leggi Tutto
Matematica
Ente geometrico che si estende nel senso della sola lunghezza; è tale, per es., la traiettoria d’un punto in moto, l’intersezione di due superfici (per es., di una sfera con un piano) ecc.; [...] . In base a tale schema si possono ottenere le equazioni delle l. che risultano essere equazioni differenziali alle derivateparziali nelle due variabili t (tempo) e x. Tali equazioni risultano molto complesse e di non semplice soluzione. Grandi ...
Leggi Tutto
Espressione con cui si indica l’argomento di molte ricerche matematiche, intese a individuare le massime e le minime grandezze tra un certo numero di grandezze assegnate, oppure i valori massimi e minimi [...] interni ad A nei quali non esiste una almeno delle due derivateparziali prime (punto V ). Un punto (ξ, η) della prima interno è assegnata una porzione c di curva regolare, di equazione ϕ (x, y)=0; tale espressione rappresenta appunto il vincolo ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1971-1980
1971-1980
1971
I problemi NP-completi. L'informatico americano Stephen Cook dà il primo esempio di problema algoritmico NP-completo. La classe NP [...] H. Rabinowitz enuncia uno dei suoi più famosi teoremi. Oltre che per le applicazioni allo studio di equazioni alle derivateparziali, questo teorema è diventato famoso per la profondità di intuizione geometrica che sottende e per la grande semplicità ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1961-1970
1961-1970
1961
Famiglia universale. Il giapponese Masatake Kuranishi mostra che esiste sempre un certo tipo di famiglia olomorfa di strutture complesse [...] un settore di ricerca attivo ancora oggi. Nel corso della sua carriera Serrin si occuperà principalmente di equazioni alle derivateparziali e di evoluzione, arrivando, nel 1973, a vincere il premio Birkoff per la matematica applicata.
Il teorema ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1951-1960
1951-1960
1951
Sui gruppi di omotopia e di omologia. In una serie di articoli (Homologie singulière des espaces fibrés) Jean-Pierre Serre fornisce [...] Lund, in Svezia (insegnerà poi nell'Università di Stoccolma), compie importanti ricerche sulla teoria delle equazioni differenziali alle derivateparziali, che dieci anni dopo gli varranno la medaglia Fields. Egli compirà inoltre importanti studi di ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1991-2000
1991-2000
1991
Il sistema operativo Linux. Uno studente finlandese, Linus Torvalds, sviluppa il sistema operativo Linux. Il sistema può essere distribuito, [...] cellule.
Medaglia Fields
Pierre-Louis Lions, Francia, Université de Paris-Dauphine, per i lavori sulle equazioni differenziali alle derivateparziali.
Jean-Christophe Yoccoz, Francia, Université de Paris-Sud, per i risultati ottenuti nella matematica ...
Leggi Tutto
L'Ottocento: matematica. Calcolo delle probabilita e statistica
Ivo Schneider
Calcolo delle probabilità e statistica
Il ruolo di Laplace nella stocastica del XIX secolo
Numerosi autori hanno contribuito [...] , nel rendere minima la somma dei quadrati degli errori
il che significa che, annullando nella [2] le m derivateparziali rispetto alle xj
si ottiene la riduzione cercata a un sistema di m equazioni lineari per le m incognite xj. Si tratta delle ...
Leggi Tutto
L'Ottocento: matematica. Le origini della teoria dei gruppi
Jeremy Gray
Le origini della teoria dei gruppi
La teoria di Galois e la soluzione algebrica delle equazioni algebriche
La teoria di Galois [...] quanto profondamente egli fosse uomo del suo tempo. Il suo interesse iniziale riguarda i sistemi di equazioni lineari alle derivateparziali, analoghi a quelli studiati da Jacobi nella dinamica. Non è facile determinare un insieme completo di ...
Leggi Tutto
equazione
equazióne s. f. [dal lat. aequatio -onis, der. di aequare «uguagliare»]. – Propr., uguaglianza, uguagliamento, pareggiamento. Il termine, raro con uso generico (si adopera tuttavia, a volte, nel linguaggio letter. e in frasi di tono...
hessiano
〈e-〉 agg. [der. del nome del matematico ted. L. O. Hesse (1811-1874)]. – Curva h. (o hessiana s. f.), per una data curva algebrica piana, è la curva algebrica luogo dei punti doppî delle polari della curva, che incontra quest’ultima,...