Turbolenza
Roberto Benzi
Uriel Frisch
La turbolenza di un fluido è un fenomeno che ciascuno di noi ha modo di osservare direttamente. Gli arabeschi formati dal fumo di una sigaretta o dal caffè versato [...] si può risolvere utilizzando i moderni calcolatori, l'equazione di Navier-Stokes presenta difficoltà matematiche ancora da autosimile, vale a dire ogni vortice dà vita in modo omogeneo a dei vortici più piccoli. Il secondo principio riguarda la ...
Leggi Tutto
potenziale
potenziale [agg. e s.m. Der. del lat. potentialis, da potentia "potenza"] [LSF] (a) In contrapp. ad attuale, di ciò che ha la capacità di esplicarsi in qualcosa, ma non attuandosi ancora. [...] In ogni teoria di campo relativistica, in partic. nella teoria della relatività generale per il campo gravitazionale, appare sempre l'equazione non omogenea di D'Alembert ð2F/ðt2-c2∇2F=s e quindi appaiono i p. ritardati. Nella fisica classica (per es ...
Leggi Tutto
varieta
varietà [Der. del lat. varietas -atis, da varius "vario"] [ALG] Nozione che generalizza quella di curva e superficie; intuitivamente, si presenta come un ente geometrico a n dimensioni (con n [...] r-dimensionale Pr, e cioè come insieme dei punti le cui coordinate proiettive soddisfano a un sistema di equazioni algebriche omogenee. Esempi elementari sono una curva algebrica piana, una superficie algebrica nello spazio a tre dimensioni, un ...
Leggi Tutto
cono
còno [Der. del lat. conus, dal gr. kònos] [ALG] La superficie (propr. c. indefinito) che s'ottiene facendo rotare attorno a una retta fissa (asse: d nella fig. 1) una retta avente in comune con [...] di piroclastiti e lave, o di sole lave, raggiungendo raram., nell'ultimo caso, la forma conica. ◆ [ALG] Equazione del c.: un'equazione algebrica f(x,y,z)=0 omogenea rispetto alle tre incognite; il vertice è nell'o-rigine degli assi; se questa ...
Leggi Tutto
Laplace Pierre-Simon de
Laplace 〈laplàs〉 (in origine La Place) Pierre-Simon de (questa particella viene quasi sempre fatta cadere) [STF] (Beaumont-en-Auge, Calvados, 1749 - Parigi 1827) Prof. di matematica [...] , poi membro dell'Accademia di Francia (1816). ◆ [ANM] Equazione di L.: l'equazione differenziale lineare omogenea alle derivate parziali del secondo ordine, prototipo delle equazioni ellittiche, ottenuta uguagliando a zero il laplaciano di una ...
Leggi Tutto
Legendre Adrien-Marie
Legendre 〈lëgŠàndr〉 Adrien-Marie [STF] (Tolosa 1752 - Parigi 1833) Prof. di matematica nell'École militaire di Parigi (1775); passò a dirigere, nel Bureau des longitudes (1787), [...] necessaria di minimo per soluzioni estremali di problemi variazionali: v. variazioni, calcolo delle: VI 463 f. ◆ [ANM] Equazione di L.: l'equazione differenziale omogenea (1-x2)y''-2xy'+n(n+1)y=0, con n costante; s'incontra nella ricerca della ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1981-1990
1981-1990
1981
Il sistema operativo MS-DOS. Tale sistema, realizzato dalla Microsoft e destinato a dominare nel suo settore, è utilizzato per la prima [...] parziale soluzione del cosiddetto 'ultimo teorema di Fermat': provare cioè che l'equazione xn+yn=zn non ha soluzioni intere positive se n>2. Dal for Astrophysics, individuano una distribuzione non omogenea di galassie, ripartite in filamenti densi ...
Leggi Tutto
soluzione
soluzióne [Der. del lat. solutio -onis, dal part. pass. solutus di solvere "sciogliere"] [LSF] In un problema matematico, in partic. quello in cui si traduce un problema fisico, il risultato [...] come sinon. di risoluzione di un problema. ◆ [CHF] Miscela omogenea di due (s. binaria) o più (s. ternaria, ecc.) la temperatura non ha alcun effetto. ◆ [ANM] S. armonica: v. equazioni differenziali ordinarie nel campo reale: II 462 f. ◆ [RGR] S. a ...
Leggi Tutto
Poisson Simeon-Denis
Poisson 〈puasòn〉 Siméon-Denis [STF] (Pithiviers 1781 - Parigi 1840) Prof. di analisi matematica e di meccanica nell'École polytechnique (1802) e alla Sorbona di Parigi (1812). ◆ [...] II 85 d. La distribuzione di P. ha estese applicazioni nella fisica delle particelle. ◆ [ANM] Equazione di P.: è l'equazione lineare alle derivate parziali seconde, non omogenea, ∇2V+kp=0, con ∇2 operatore laplaciano, V e p funzioni delle coordinate ...
Leggi Tutto
omogeneita
omogeneità [Der. del lat. homogeneitas -atis, da homogeneus (→ omogeneo)] [LSF] La condizione di ciò che è omogeneo, sia rispetto ad altri enti, sia rispetto alle sue parti, in quanto vi sia [...] dell'o. dimensionale: metodo consistente nel verificare che i due membri di un'equazione tra grandezze fisiche abbiano le medesime dimensioni, cioè siano dimensionalmente omogenei; l'esistenza di tale o. è una condizione necessaria ma non sufficiente ...
Leggi Tutto
equazione
equazióne s. f. [dal lat. aequatio -onis, der. di aequare «uguagliare»]. – Propr., uguaglianza, uguagliamento, pareggiamento. Il termine, raro con uso generico (si adopera tuttavia, a volte, nel linguaggio letter. e in frasi di tono...
omogeneo
omogèneo agg. [dal lat. scolastico homogeneus, der. del gr. ὁμογενής «della stessa stirpe o specie», comp. di ὁμο- «omo-» e del tema γεν- «generare»]. – 1. a. Della stessa specie, della stessa natura, dello stesso carattere, detto...