Rappresentazione schematica dell’andamento di un fenomeno o di un’attività (➔ diagramma). Il ricorso a un g. permette sia di rappresentare sia di effettuare direttamente alcune operazioni di matematica: [...] avente il coefficiente angolare a pari al corrispondente valore di y′. Una soluzione y=f(x) dell’equazione proposta ha come g. una curva integrale ottenuta ‘raccordando’ con continuità gli elementi di retta nominati, a partire dal punto iniziale. Il ...
Leggi Tutto
In matematica, si dice fattore i. di una data equazione differenziale del primo ordine, A(x,y)dx+B(x,y)dy=0, una funzione μ(x,y) tale che il suo prodotto per il primo membro dell’equazione sia un differenziale [...] . La conoscenza di un fattore i. dà la possibilità di integrare l’equazione; se sono conosciuti, invece, due fattori i., il loro rapporto uguagliato a una costante arbitraria dà l’integrale generale dell’equazione A(x,y)dx+B(x,y)dy=0. I fattori i ...
Leggi Tutto
Il c. delle v. è quell'area della matematica definita dal seguente problema: determinare, in una famiglia assegnata di oggetti, quello che rende minima (oppure massima) una certa grandezza. Gli oggetti [...] E di cui si cerca il valore minimo si scriva come integrale di un'espressione più o meno complessa che coinvolge u e di usarlo per risolvere problemi di c. delle v. ed equazioni alle derivate parziali è arrivata alla fine di un processo lungo ...
Leggi Tutto
L'Ottocento: matematica. Analisi complessa
Jeremy Gray
Analisi complessa
Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] della forma
[11] ∫F(x,y)dx,
nei quali le variabili (reali o complesse) soddisfano un'equazione del tipo G(x,y)=0, con F e G funzioni razionali di x e y. Si ottiene un integrale ellittico quando G(x,y)=y2−f(x), con f(x) polinomio di grado quattro e F ...
Leggi Tutto
L'Ottocento: matematica. Teoria dei numeri
Catherine Goldstein
Teoria dei numeri
Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] e b interi ordinari, risulta che, (1+√5)/2 è radice dell'equazione algebrica x2−x−1=0, la quale ha coefficiente direttore uguale a 1: lettera che la funzione Li(x), il logaritmo integrale:
fornisse una approssimazione migliore. Ciò fu confermato dal ...
Leggi Tutto
L'Ottocento: matematica. Il rigore in analisi
Umberto Botta
Il rigore in analisi
L'eredità di Lagrange
All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] diario. Nel 1805 egli aveva affrontato il problema della convergenza della serie ipergeometrica
ottenuta da Euler come integrale di un'equazione differenziale lineare del secondo ordine e nel 1813 aveva pubblicato i risultati ottenuti. La [12] era ...
Leggi Tutto
L'Ottocento: matematica. Equazioni differenziali alle derivate parziali
Thomas Archibald
Equazioni differenziali alle derivate parziali
Nel corso del XIX sec. la teoria delle funzioni di più variabili [...] e ciò perché le interpretazioni geometriche erano spesso complicate, soprattutto per quanto riguarda le equazioni differenziali. Iterare gli integrali per calcolare aree, volumi o forze esercitate tra corpi estesi era una pratica diffusa, quantunque ...
Leggi Tutto
Operatori, teoria degli
Helmut H. Schaefer e Manfred P. Wolff
Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] funzionali, vol. II).
Per gli operatori compatti vale ancora, nella teoria delle equazioniintegrali, la seguente importante affermazione: sia λ ≠ 0, T compatto. Allora le equazioni λx - Tx = y (x, y ∈ E) e λx′ - T ′x′ = y′ (x′, y′ ∈ E′) sono ...
Leggi Tutto
La grande scienza. Teoria dei numeri
Anatolij A. Karatsuba
Teoria dei numeri
La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] , Littlewood e Ramanujan rappresentarono, utilizzando la formula di Cauchy, il numero delle soluzioni di un'equazione diofantea come integrale della corrispondente funzione generatrice, ottenendo in alcuni casi rappresentazioni asintotiche per tali ...
Leggi Tutto
L'Eta dei Lumi: matematica. Le equazioni differenziali
Silvia Mazzone
Clara Silvia Roero
Le equazioni differenziali
E con la nascita del calcolo infinitesimale di Newton e di Leibniz, nella seconda [...] Riccati generalizzata
[48] dy=R(x)dx+P(x)ydx+Q(x)y2dx,
dimostra che, noti due integrali particolari, l'integrazione di tale equazione si può ricondurre alle quadrature. Euler presenta inoltre negli anni 1762-1763 una nuova dimostrazione per ricavare ...
Leggi Tutto
integrale
agg. e s. m. [dal lat. tardo integralis, der. di intĕger «integro, intero»]. – 1. agg., non com. Di elemento che fa parte di un tutto, che concorre alla costituzione di un intero (sinon. quindi di integrante): i corpi i. del mondo...
equazione
equazióne s. f. [dal lat. aequatio -onis, der. di aequare «uguagliare»]. – Propr., uguaglianza, uguagliamento, pareggiamento. Il termine, raro con uso generico (si adopera tuttavia, a volte, nel linguaggio letter. e in frasi di tono...