• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
49 risultati
Tutti i risultati [558]
Algebra [49]
Matematica [187]
Fisica [149]
Analisi matematica [77]
Fisica matematica [74]
Temi generali [47]
Storia della fisica [48]
Biografie [43]
Storia della matematica [43]
Statistica e calcolo delle probabilita [35]

Equazioni funzionali

Enciclopedia del Novecento (1977)

Equazioni funzionali JJacques Louis Lions di Jacques Louis Lions Equazioni funzionali sommario: 1. Motivazione ed esempi. 2. Definizione delle soluzioni. 3. Il metodo della trasformazione di Fourier; [...] non lineari. La fisica porta, anche, sia ad ‛equazioni integrali' (v. analisi), sia ad ‛equazioni integrali alle derivate parziali', cioè contenenti non solo derivate parziali, ma anche integrali, lineari o no. A questo riguardo, il modello più ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONE ALLE DERIVATE PARZIALI – FUNZIONI A QUADRATO SOMMABILE – TEORIA QUANTISTICA DEI CAMPI – SPAZIO VETTORIALE TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su Equazioni funzionali (2)
Mostra Tutti

L'Età dei Lumi: matematica. La teoria dei numeri

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. La teoria dei numeri Günther Frei La teoria dei numeri La teoria dei numeri (o aritmetica) tratta delle proprietà dei numeri. Lungo tutta la sua storia, un tema dominante [...] o con il calcolo differenziale e integrale, e non attraeva quindi molta attenzione t e n numeri naturali, e a è un qualsiasi intero non divisibile per p, allora l'equazione a−xn=py ha soluzioni per x e y interi se e solo se at−1=pz è risolubile ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – ARITMETICA – STORIA DELLA MATEMATICA

Combinatoria

Enciclopedia della Scienza e della Tecnica (2007)

Combinatoria Peter J. Cameron Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri non rappresenta una branca separata dalle altre ma le pervade tutte, poiché [...] il predominio. A seguito dello sviluppo del calcolo differenziale e integrale di Isaac Newton e Gottfried W. Leibniz, sembrò che non è osservabile ed è per questo che le equazioni differenziali danno una buona descrizione dell'Universo. La geometria ... Leggi Tutto
CATEGORIA: ALGEBRA – ARITMETICA
TAGS: PRINCIPIO DI ESCLUSIONE DI PAULI – TEORIA DELLE RAPPRESENTAZIONI – INSIEMI PARZIALMENTE ORDINATI – PROBLEMA DEI QUATTRO COLORI – FONDAMENTI DELLA MATEMATICA
Mostra altri risultati Nascondi altri risultati su Combinatoria (4)
Mostra Tutti

potenziale

Dizionario delle Scienze Fisiche (1996)

potenziale potenziale [agg. e s.m. Der. del lat. potentialis, da potentia "potenza"] [LSF] (a) In contrapp. ad attuale, di ciò che ha la capacità di esplicarsi in qualcosa, ma non attuandosi ancora. [...] funzione p. ha per definizione, in un dato punto, l'integrale di linea del vettore del campo dal punto di riferimento A al Nella fisica classica (per es., nel-l'acustica) abbiamo un'equazione di D'Alembert ove al posto della velocità della luce appare ... Leggi Tutto
CATEGORIA: TEMI GENERALI – BIOFISICA – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA DEI SOLIDI – FISICA MATEMATICA – GEOFISICA – MECCANICA – RELATIVITA E GRAVITAZIONE – TERMODINAMICA E TERMOLOGIA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su potenziale (2)
Mostra Tutti

energia

Dizionario delle Scienze Fisiche (1996)

energia energìa [Der. del lat. energia, dal gr. enérgeia, da érgon "lavoro"] [LSF] Capacità che un corpo o un sistema di corpi ha di compiere lavoro, sia come e. in atto, cioè che opera nel processo [...] si rende l'ingl. exergy, per il quale peraltro il termine corrente è exergia (←). ◆ [MCC] E. generalizzata: è un integrale primo delle equazioni di Lagrange: v. meccanica analitica: III 655 a. ◆ [LSF] E. in atto: contrapp. a e. potenziale, v. sopra ... Leggi Tutto
CATEGORIA: TEMI GENERALI – ACUSTICA – ASTROFISICA E FISICA SPAZIALE – BIOFISICA – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA DEI SOLIDI – FISICA MATEMATICA – GEOFISICA – MECCANICA – OTTICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – TERMODINAMICA E TERMOLOGIA – ALGEBRA – STATISTICA E CALCOLO DELLE PROBABILITA – EPISTEMOLOGIA – METAFISICA
Mostra altri risultati Nascondi altri risultati su energia (13)
Mostra Tutti

forza

Dizionario delle Scienze Fisiche (1996)

forza fòrza [Der. del lat. fortia, da fortis "forte"] [MCC] In termini elementari, la causa capace di modificare lo stato di quiete o di moto di un corpo; come tale, cioè in relazione alle modificazioni [...] reale risultante (cioè dovuta al-l'interazione con altri corpi) l'equazione del moto relativo, che ha luogo con accelerazione lineare ar, è F. magnetomotrice: in un circuito magnetico, l'integrale di linea dell'intensità magnetica; sua unità di ... Leggi Tutto
CATEGORIA: TEMI GENERALI – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – FISICA NUCLEARE – FISICA TECNICA – MECCANICA – MECCANICA DEI FLUIDI – METROLOGIA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – TERMODINAMICA E TERMOLOGIA – ALGEBRA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su forza (5)
Mostra Tutti

funzione

Dizionario delle Scienze Fisiche (1996)

funzione funzióne [Der. del lat. functio -onis, dal part. pass. functus di fungi "adempiere"] Concetto che s'identifica con quello di applicazione, essendo peraltro preferito se l'insieme di arrivo è [...] . potenziali chimici e termodinamici: IV 573 e. ◆ F. implicita: f. la cui espressione analitica è data dall’equazione F(x1,...xn, y)=0, cioè in forma implicita. ◆F. integrale: di un campo vettoriale X su una varietà V è una f. costante lungo le curve ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su funzione (8)
Mostra Tutti

varieta

Dizionario delle Scienze Fisiche (1996)

varieta varietà [Der. del lat. varietas -atis, da varius "vario"] [ALG] Nozione che generalizza quella di curva e superficie; intuitivamente, si presenta come un ente geometrico a n dimensioni (con n [...] ] V. algebrica: ogni v. definita da un sistema di equazioni algebriche: v. varietà algebrica. La nozione di v. algebrica v. algebrica descritta anche da coordinate grassmanniane. ◆ [MCC] V. integrale: v. meccanica analitica: III 653 e. ◆ [ALG] V. ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – RELATIVITA E GRAVITAZIONE – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su varieta (6)
Mostra Tutti

Laplace Pierre-Simon de

Dizionario delle Scienze Fisiche (1996)

Laplace Pierre-Simon de Laplace 〈laplàs〉 (in origine La Place) Pierre-Simon de (questa particella viene quasi sempre fatta cadere) [STF] (Beaumont-en-Auge, Calvados, 1749 - Parigi 1827) Prof. di matematica [...] , teoria del: IV 568 d. ◆ [ANM] Equazione secolare di L.: → secolare. ◆ [GFS] Equazioni mareali di L.: v. maree atmosferiche: III 620 detta trasformata di L. della F(t): v. trasformazioni integrali: VI 303 a. L'operazione e la funzione ora ricordate ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – GEOFISICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – EPISTEMOLOGIA – METAFISICA
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE – ACCADEMIA DI FRANCIA – EQUAZIONI ELLITTICHE – FORZA GRAVITAZIONALE – CORRENTE ELETTRICA
Mostra altri risultati Nascondi altri risultati su Laplace Pierre-Simon de (4)
Mostra Tutti

Gauss Karl Friedrich

Dizionario delle Scienze Fisiche (1996)

Gauss Karl Friedrich Gauss 〈gàus〉 Karl Friedrich [STF] (Brunswick 1777 - Gottinga 1855) Prof. di astronomia nell'univ. di Gottinga e direttore del locale Osservatorio astronomico (1807). ◆ [ALG] Applicazione [...] [ANM] Equazione ipergeometrica di G.: v. equazioni differenziali ordinarie nel campo reale: II 460 a. ◆ [RGR] Equazioni di G.-Codazzi , n→∞∫n-m exp(-x2) dx=π1/✄; (b) un particolare integrale che dà, a meno del fattore 4π, l'indice di allacciamento, ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – ELETTROLOGIA – FISICA MATEMATICA – GEOFISICA – MECCANICA – MECCANICA DEI FLUIDI – METROLOGIA – OTTICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE – METODO DEI MINIMI QUADRATI – CAMPO MAGNETICO TERRESTRE – OSSERVATORIO ASTRONOMICO – SERIE IPERGEOMETRICA
Mostra altri risultati Nascondi altri risultati su Gauss Karl Friedrich (5)
Mostra Tutti
1 2 3 4 5
Vocabolario
integrale
integrale agg. e s. m. [dal lat. tardo integralis, der. di intĕger «integro, intero»]. – 1. agg., non com. Di elemento che fa parte di un tutto, che concorre alla costituzione di un intero (sinon. quindi di integrante): i corpi i. del mondo...
equazióne
equazione equazióne s. f. [dal lat. aequatio -onis, der. di aequare «uguagliare»]. – Propr., uguaglianza, uguagliamento, pareggiamento. Il termine, raro con uso generico (si adopera tuttavia, a volte, nel linguaggio letter. e in frasi di tono...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali