Pearson 〈pìësn〉 Karl [STF] (Londra 1857 - Coldharbour, Surrey, 1936) Prof. di meccanica (1881), poi di geometria (1891), infine di eugenica nello Univ. College di Londra (1911). ◆ [PRB] Curve di P.: nella [...] statistica, le curve integrali nel piano (x,y) dell'equazionedifferenziale y'/y=(x-d)/(ax2+ bx+c), con a,b,c,d costanti e y'=dy/dx, che rappresentano distribuzioni di frequenza da considerarsi generalizzazioni di quella normale di Gauss (questa si ...
Leggi Tutto
Tricomi Francesco Giacomo
Trìcomi Francesco Giacomo [STF] (Napoli 1897 - Torino 1978) Prof. di analisi matematica nell'univ. di Firenze (1925) e poi di Torino (1928). ◆ [ANM] Approssimazione di T.: v. [...] 78 d. ◆ [ANM] Equazione di T.: equazionedifferenziale alle derivate parziali del secondo ordine, lineare, a due variabili indipendenti, che rappresenta il prototipo delle equazioni di tipo misto: v. equazionidifferenziali alle derivate parziali: II ...
Leggi Tutto
L'Eta dei Lumi: matematica. La meccanica del continuo
James Cross
La meccanica del continuo
La trattazione della meccanica del continuo nel XVIII sec., in particolare dell'elasticità e della meccanica [...] ) e per le distanze fra i nodi (punti di quiete).
Nel primo lavoro, non venivano ricavate le equazioni del moto: si consideravano invece delle equazionidifferenziali ordinarie di variabili spaziali, ed è un'espressione come n2(d4y/dx4)=y che Euler e ...
Leggi Tutto
L'Eta dei Lumi: matematica. I Principia di Newton nel Settecento
Niccolò Guicciardini
I Principia di Newton nel Settecento
Nel 1687 furono pubblicati a Londra i Principia di Newton. Quest'opera è oggi [...] che in tali casi Newton impartiva istruzioni ai suoi discepoli su come leggere le dimostrazioni dei Principia in termini di equazionidifferenziali. Per esempio, egli istruì David Gregory (1659-1708) su come calcolare la traiettoria di un punto massa ...
Leggi Tutto
Airy Sir George Biddel
Airy ⟨èeri⟩ Sir George Biddel [STF] (Alnwich 1801 - Greenwich 1892) Astronomo reale d'Inghilterra e direttore dell'Osservatorio di Greenwich (1836); socio straniero dei Lincei [...] nell'espressione dell'integrale di A. (v. oltre). ◆ [ANM] Integrale di A.: dà la soluzione generale dell'equazionedifferenziale xy-(d2y/ dx2)=0 (equazione di A.), esprimibile come una combinazione lineare delle funzioni di A. Ai(z) e Bi(z) della ...
Leggi Tutto
ordine
órdine [Der. del lat. ordo -inis] [LSF] (a) Disposizione regolare di più cose secondo una regola prefissata; (b) il grado più o meno grande di organizzazione interna di un sistema complesso, relativ. [...] di fase: v. fase, transizioni di: II 538 f. ◆ [ALG] O. di un corpo algebrico finito: → corpo. ◆ [ANM] O. di un'equazionedifferenziale: l'o. maggiore tra quelli delle derivate che vi figurano. ◆ [ALG] O. di un flesso: v. curve e superfici: II 75 e ...
Leggi Tutto
condizione
condizióne [Der. del lat. condicio -onis (tardo conditio -onis), da condicere "accordarsi, convenire"] [LSF] Fatto il cui intervento è necessario perché un altro fatto possa verificarsi (per [...] termine è quasi sempre specificato da un'opportuna qualificazione. ◆ [ANM] C. ai limiti o al contorno: per le equazionidifferenziali alle derivate parziali, sono i valori prefissati che le funzioni incognite e talune loro derivate devono assumere in ...
Leggi Tutto
Lame Gabriel
Lamé 〈lamé〉 Gabriel [STF] (Tours 1795 - Parigi 1870) Prof. di fisica nell'École polytechnique di Parigi (1832) e di calcolo delle probabilità nell'univ. di Parigi (1848); socio straniero [...] 2, m=2/3, m=-1. ◆ [ANM] Equazione di L.: equazionedifferenziale ordinaria del secondo ordine che permette di risolvere l'equazione di Laplace espressa in coordinate ellissoidiche. Le soluzioni dell'equazione di L. sono dette funzioni, o polinomi, di ...
Leggi Tutto
Liouville Joseph
Liouville 〈liuvìl〉 Joseph [STF] (Saint-Omer, Pas de Calais, 1809 - Parigi 1882) Prof. di matematica nell'École polytecnique (1831) e nel Collège de France (1851), poi di meccanica alla [...] Sorbona (1857). ◆ [PRB] Distribuzione di L.: quella rappresentata dall'equazione di L. (v. oltre). ◆ [ANM] Equazione di L.: l'equazionedifferenziale ordinaria non lineare del secondo ordine y''+P(x)y'+Q(y) y'2=0, il cui integrale generale è ∫exp[∫Q( ...
Leggi Tutto
Laguerre Edmond-Nicolas
Laguerre 〈lag✄èr〉 Edmond-Nicolas [STF] (Bar-le-Duc 1834 - m. 1886) Ufficiale di artiglieria, poi prof. di geometria nell'Accademia delle scienze di Parigi (1874). ◆ [ANM] Equazione [...] ₁xn-r-1+...+an-r-1x+an-r, con r=0,1,...,n, che interviene in varie questioni di algebra dei polinomi: v. equazionidifferenziali ordinarie nel campo reale: II 459 d. ◆ [ANM] Polinomio di L.: lo stesso che funzione di L. (v. sopra). ◆ [ALG] Teorema di ...
Leggi Tutto
equazione
equazióne s. f. [dal lat. aequatio -onis, der. di aequare «uguagliare»]. – Propr., uguaglianza, uguagliamento, pareggiamento. Il termine, raro con uso generico (si adopera tuttavia, a volte, nel linguaggio letter. e in frasi di tono...
integrale
agg. e s. m. [dal lat. tardo integralis, der. di intĕger «integro, intero»]. – 1. agg., non com. Di elemento che fa parte di un tutto, che concorre alla costituzione di un intero (sinon. quindi di integrante): i corpi i. del mondo...