• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
lingua italiana
249 risultati
Tutti i risultati [752]
Matematica [249]
Fisica [192]
Analisi matematica [105]
Fisica matematica [93]
Temi generali [65]
Storia della fisica [66]
Biografie [50]
Algebra [53]
Chimica [48]
Storia della matematica [46]

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten

Storia della Scienza (2003)

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten Enrico Arbarello Geometria numerativa e invarianti di Gromov-Witten Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] casi, rende calcolabili gli invarianti di Gromov-Witten è il fatto che il potenziale Φ soddisfa l'equazione WDVV [12]. È questo un sistema di equazioni differenziali che può scriversi nel modo seguente per ogni scelta di i, j, k, l. Nel caso in ... Leggi Tutto
CATEGORIA: GEOMETRIA

L'Età dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele Peter Schreiber Geometria analitica, delle curve e delle superfici. Il problema delle parallele A [...] circostante. Sebbene anche Leibniz avesse discusso a lungo con i fratelli Bernoulli di questo problema, formulazioni in termini di equazioni differenziali si ebbero soltanto nel 1728 a opera di Johann I Bernoulli e di Euler con De linea brevissima in ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. I metodi numerici

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. I metodi numerici Peter Schreiber I metodi numerici Il XVII sec. è stato in generale un 'secolo geometrico'. A parte alcune considerazioni di carattere puramente numerico, [...] i procedimenti dell'analisi numerica vera e propria. Per fare un esempio, per trovare le soluzioni di una classe di equazioni differenziali, si può procedere in due modi: (a) determinare la funzione soluzione sotto forma di una formula, a partire da ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La grande scienza. Calcolo delle variazioni

Storia della Scienza (2003)

La grande scienza. Calcolo delle variazioni Gianni Dal Maso Calcolo delle variazioni Un problema di grande importanza nella matematica pura e applicata è la ricerca dei valori massimi o minimi di grandezze [...] per contorno le due circonferenze. Come vedremo, la funzione che realizza il minimo, quando esiste, deve soddisfare un'equazione differenziale, detta 'equazione di Euler', che in questo caso ha come soluzione esplicita le funzioni u(x)=(1/c1)cosh(c1x ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA

L'Età dei Lumi: matematica. La teoria dei numeri

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. La teoria dei numeri Günther Frei La teoria dei numeri La teoria dei numeri (o aritmetica) tratta delle proprietà dei numeri. Lungo tutta la sua storia, un tema dominante [...] sviluppò 4/π in frazione continua. Dal 1731 Euler iniziò a studiare questo argomento, in relazione inizialmente con l'equazione differenziale di Jacopo Riccati, e in seguito con la teoria dei numeri. Nel suo primo lavoro sulle frazioni continue, De ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – ARITMETICA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. La matematica della teoria delle perturbazioni da Euler a Laplace

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. La matematica della teoria delle perturbazioni da Euler a Laplace Curtis Wilson La matematica della teoria delle perturbazioni da Euler a Laplace Accanto allo sviluppo dei [...] moto di Saturno si fosse rivelata soddisfacente. Per mostrare come questo termine si manifesta, esprimiamo la parte relativa a y dell'equazione differenziale: dove E′ è l'anomalia eccentrica di Giove, n è il rapporto dei moti medi e θ=φ′−φ. Se (θ ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA

Analisi non lineare: metodi variazionali

Enciclopedia della Scienza e della Tecnica (2007)

Analisi non lineare: metodi variazionali Antonio Ambrosetti I primi problemi di calcolo delle variazioni si presentano quasi spontaneamente, anche nello studio della geometria elementare e hanno infatti [...] ogni v∈C0. Le funzioni z che godono di questa prorietà sono chiamate punti critici di T (in C) e verificano l'equazione differenziale [3]. È anche chiara l'analogia con il caso elementare di una funzione regolare f : ℝ→ℝ. Come è ben noto, se x*∈ℝ è ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE ALLE DERIVATE PARZIALI – PROBLEMA DELLA BRACHISTOCRONA – CALCOLO DELLE VARIAZIONI – EQUAZIONE DI SCHRÖDINGER – PROIEZIONE STEREOGRAFICA

Computazionali, metodi

Enciclopedia della Scienza e della Tecnica (2007)

Computazionali, metodi Alfio Quarteroni I metodi computazionali permettono di risolvere con i computer, nell'ambito delle scienze applicate, problemi complessi formulabili tramite il linguaggio della [...] stimolato negli ultimi decenni un enorme sviluppo di metodi numerici e computazionali adatti alla loro risoluzione. Equazioni differenziali ordinarie Consideriamo l'equazione differenziale ordinaria al prim'ordine y′(x)=f (x,y (x)), per x≥x0, con un ... Leggi Tutto
CATEGORIA: MATEMATICA APPLICATA
TAGS: FORMULA FONDAMENTALE DEL CALCOLO INTEGRALE – EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – SISTEMA DI EQUAZIONI, LINEARI – METODO DEGLI ELEMENTI FINITI

Modelli

Enciclopedia delle scienze sociali (1996)

Modelli Patrick Suppes Il significato del termine 'modello' nelle scienze Il termine 'modello' non è usato esclusivamente in ambito scientifico, ma nei contesti più vari. Ciascuno di noi sa che cosa [...] studente in un corso, non è veramente assiomatico nella forma, ma è assimilabile ai casi classici di derivazione di equazioni differenziali, fatta sulla base di particolari ipotesi. Il punto essenziale, al riguardo, è che le ipotesi empiriche da cui ... Leggi Tutto
CATEGORIA: LOGICA MATEMATICA
TAGS: EQUAZIONI DI NAVIER-STOKES – PASSAGGIO AL COMPLEMENTARE – EQUAZIONE DIFFERENZIALE – TRASFORMAZIONE LINEARE – TEORIA DELLE DECISIONI

L'Ottocento: matematica. Metodi del calcolo numerico

Storia della Scienza (2003)

L'Ottocento: matematica. Metodi del calcolo numerico Dominique Tournès Metodi del calcolo numerico Prima del 1870 l'analisi numerica non si era ancora sviluppata come disciplina autonoma; esisteva [...] raggio di curvatura di una curva soluzione è dato, posto dy/dx=tan α, dalla: Sotto questa nuova forma l'equazione differenziale fornisce il raggio di curvatura in funzione della posizione del mobile e della direzione del moto. Si pensa dunque alla ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA
1 2 3 4 5 6 7 8 ... 25
Vocabolario
equazióne
equazione equazióne s. f. [dal lat. aequatio -onis, der. di aequare «uguagliare»]. – Propr., uguaglianza, uguagliamento, pareggiamento. Il termine, raro con uso generico (si adopera tuttavia, a volte, nel linguaggio letter. e in frasi di tono...
integrale
integrale agg. e s. m. [dal lat. tardo integralis, der. di intĕger «integro, intero»]. – 1. agg., non com. Di elemento che fa parte di un tutto, che concorre alla costituzione di un intero (sinon. quindi di integrante): i corpi i. del mondo...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali