L'Eta dei Lumi: matematica. La meccanica del continuo
James Cross
La meccanica del continuo
La trattazione della meccanica del continuo nel XVIII sec., in particolare dell'elasticità e della meccanica [...] ma vediamo che ora Euler determina in molti casi, semplici e meno semplici, la soluzione generale diequazioni differenziali lineari a coefficienti costanti. Lagrange nel 1759 fornì le soluzioni esplicite per una corda sotto carico, ma si confuse al ...
Leggi Tutto
L'Eta dei Lumi: matematica. Le tradizioni principali della meccanica
Ivor Grattan-Guinness
Le tradizioni principali della meccanica
Branche della meccanica
La meccanica, nel suo ampio spettro di usi, [...] lo 'spirito' della meccanica: per esempio, nelle equazionidi Euler per la rotazione di un corpo continuo i momenti d'inerzia comparivano come costanti di un'integrazione parziale. L'approccio diLagrange costituiva in primo luogo un procedimento ...
Leggi Tutto
L'Eta dei Lumi: matematica. I Principia di Newton nel Settecento
Niccolò Guicciardini
I Principia di Newton nel Settecento
Nel 1687 furono pubblicati a Londra i Principia di Newton. Quest'opera è oggi [...] sostenere, offrendo una risoluzione nei termini dell'integrazione di un'equazione differenziale in coordinate polari, che lui, e non diLagrange.
La meccanica dei 'Principia'
I Principia di Newton sono fondati sui tre "assiomi o leggi del moto" di ...
Leggi Tutto
BURGATTI, Pietro
Enzo Pozzato
Nacque a Cento (Ferrara) il 27 febbr. 1868 da Federico e da Marietta Biegoli. Aveva abbracciato negli anni giovanili la carriera militare, che abbandonò per l'interesse [...] . di sc. fis., s. 5, IX [1900], pp. 295-301). In questa parte delle ricerche devono essere messe in luce le indagini sui giroscopi. Prima che il B. iniziasse le sue ricerche, Eulero, Lagrange e Kovalevskij erano riusciti a risolvere le equazioni del ...
Leggi Tutto
Airy Sir George Biddel
Airy ⟨èeri⟩ Sir George Biddel [STF] (Alnwich 1801 - Greenwich 1892) Astronomo reale d'Inghilterra e direttore dell'Osservatorio di Greenwich (1836); socio straniero dei Lincei [...] [OTT] Condizione di A., o condizione di A.-Lagrange o condizione di ortoscopia: assicura l'ortoscopia di un sistema ottico lamina trasparente a facce piane e parallele, quale compare nell'equazionedi A. sopra citata (v. interferenza della luce: III ...
Leggi Tutto
Eulero
Eulèro [STF] Forma italianizz. assai frequente del cognome di L. Euler. ◆ [ALG] [MCC] Angoli di E.: terna di angoli con cui s'individua l'orientamento di un solido intorno a un punto o, che è [...] costanti del: IV 122 a. ◆ [MCF] Equazionidi E. fluidodinamiche: le equazioni generali del campo di velocità in un fluido ideale: v. aerodinamica subsonica: I 66 e. ◆ [ALG] Equazionidi E.-Lagrange: le equazioni che hanno per soluzione le traiettorie ...
Leggi Tutto
La sensazione uditiva e le vibrazioni di un mezzo (per lo più l’aria, ma anche mezzi elastici qualunque) che possono produrre tale sensazione. Per estensione, tutte le vibrazioni propagantisi in un mezzo, [...] ; nel 1714 G. Tartini quello dei cosiddetti s. di combinazione; nel 1762 G.L. Lagrange dà, quasi contemporaneamente a D. Bernoulli, la teoria s. (o più in generale di un’onda elastica) non sono descritti dall’equazione lineare delle onde (∂2ϕ/∂t2=v2 ...
Leggi Tutto
Chimica
Per la dinamica in chimica ➔ dinamica molecolare.
Economia
Per la dinamica in economia ➔ dinamica economica.
Fisica
Parte della meccanica che studia i movimenti dei corpi in relazione alle cause [...] , fra gli altri, J.-B. D’Alembert, L. Euler, G.L. Lagrange, L. Poinsot, A.-L. Cauchy, G. Bernoulli, K. Gauss. Successivamente con equazioni cardinali della dinamica dei sistemi. Si tratta di due equazioni vettoriali (quindi di sei equazioni ...
Leggi Tutto
L'Eta dei Lumi: l'avvento delle scienze della Natura 1770-1830. La fisica matematica
John L. Heilbron
La fisica matematica
1. Definizioni e ambito
L'oggetto della fisica matematica, nel periodo che [...] di un gas in generale. Quest'ultima equazione è conosciuta come 'legge di Gay-Lussac' o 'di Charles di essere proporzionale alla densità (secondo la legge di Boyle), fosse proporzionale alla radice cubica di essa; tuttavia, lo stesso Lagrange ...
Leggi Tutto
L'Ottocento: fisica. L'acustica
Dieter Ullmann
Myles W. Jackson
L'acustica
Acustica fisiologica: Helmholtz
di Dieter Ullmann
Hermann von Helmholtz (1821-1894), uno dei massimi scienziati del XIX sec., [...] esposte, resa nota però solamente grazie al lavoro di Joseph-Louis Lagrange nel 1759 e, nei decenni successivi, generalmente accettata dell'aria. I due capitoli successivi esaminano le equazioni generali delle vibrazioni dell'aria in tre dimensioni. ...
Leggi Tutto
lagrangiano
agg. – Che si riferisce o è dovuto al matematico G. L. Lagrange (1736-1813). Nella meccanica analitica, coordinate l., parametri arbitrarî di numero finito (uguale al numero dei gradi di libertà) che determinano completamente la...