Economia
P. economica Il complesso degli interventi dello Stato nell’economia, realizzati spesso sulla base di un piano pluriennale (in questo senso il termine si alterna, nell’uso, con pianificazione). [...] con le quantità l1, …, lm (moltiplicatori diLagrange) le relazioni:
Le condizioni di Kuhn-Tucker sono sufficienti quando la f è per passare dallo stato xi a quello finale xn si ha l’equazionedi R. Bellman:
minJi=minai[w(xi, ai)+minJi+1], minJn= ...
Leggi Tutto
Alimentazione
Insieme delle tecniche che tendono ad arrestare o rallentare i processi vitali che si svolgono in un prodotto alimentare non trattato rendendolo non commestibile. Esse permettono quindi l’impiego [...] temporali, quindi la lagrangiana del sistema non può dipendere esplicitamente dal tempo (∂L/∂t=o), si ha pertanto
e sostituendo, grazie alle equazionidiLagrange, ∂L/∂qi con d (∂L/∂q̇i) /dt si ottiene
cioè la grandezza E=Σi q̇i ∂L/∂ q̇i−L, detta ...
Leggi Tutto
Espressione con cui si indica l’argomento di molte ricerche matematiche, intese a individuare le massime e le minime grandezze tra un certo numero di grandezze assegnate, oppure i valori massimi e minimi [...] nei quali si presentano fenomeni di singolarità, il metodo dei moltiplicatori diLagrange fornisce le seguenti condizioni necessarie perché un punto sia punto di massimo o di minimo vincolato:
esso è un sistema di n+s equazioni nelle n+s incognite ...
Leggi Tutto
Concetto fondamentale nell’analisi matematica e nelle sue applicazioni che esprime, date due grandezze l’una funzione dell’altra (per es., in fisica, lo spazio percorso e il tempo impiegato a percorrerlo, [...] : per es., se s=s(t) rappresenta l’equazione oraria del moto di un punto, la d. s′(t), che si di Cauchy: esiste almeno un punto ξ di (a,b) per il quale si ha g′(ξ) [f(b)−f(a)]=f′(ξ) [g(b)−g(a)].
Teorema diLagrange: esiste almeno un punto ξ di ...
Leggi Tutto
Matematica
Calcolo delle variazioni
Ramo della matematica che studia i metodi per ottenere i massimi e i minimi di un insieme di elementi (in generale funzioni) considerati come punti di un opportuno spazio [...] dovrà essere nulla la v. prima del funzionale I,
[2]
Ciò conduce, dopo ulteriori calcoli in ipotesi di regolarità per la f, all’equazione differenziale di Eulero (o di Eulero-Lagrange) del secondo ordine
[3]
dove il primo membro è la derivata v ...
Leggi Tutto
Uno dei rami fondamentali delle scienze matematiche: in senso lato l’a. studia le operazioni, definite in un insieme, che godono di proprietà analoghe a quelle delle ordinarie operazioni dell’aritmetica. [...] G.L. Lagrange, P.-S. Laplace, l’impostazione e i primi tentativi di dimostrazione del cosiddetto teorema fondamentale dell’a.; la prima dimostrazione rigorosa è dovuta a C.F. Gauss (1799). Questo teorema afferma che un’equazione algebrica di grado n ...
Leggi Tutto
Matematico (Potsdam 1805 - Berlino 1851). Uno tra i protagonisti degli studi matematici del 19° secolo, fornì imprescindibili contributi allo studio delle funzioni ellittiche; il suo nome è ricordato per [...] (Gesammelte Werke, 1881-91).
Vita e attività
Studiò giovanissimo le opere di L. Eulero e di G. L. Lagrange. Tentò di risolvere mediante radicali l'equazione algebrica generale di 5º grado (cosa dimostrata, peraltro, impossibile in quegli stessi anni ...
Leggi Tutto
VARIAZIONI, CALCOLO DELLE.
Leonida Tonelli
- È quel ramo dell'analisi matematica che studia i problemi di massimo e minimo (v. massimi e minimi) relativi a quantità variabili, che si presentano sotto [...] due numeri h e k, non ambedue nulli, e tali che la y (x) soddisfi all'equazione differenziale
18. I problemi diLagrange e di Mayer. - Una questione di calcolo delle variazioni che non rientra in nessuno dei tipi sino ad ora da noi considerati è ...
Leggi Tutto
INFINITESIMALE, ANALISI
Giulio VIVANTI
Sotto questo nome si comprendono insieme il calcolo differenziale e il calcolo integrale. Rimandando a differenziale, calcolo; integrale, calcolo per i metodi [...] , n. 13), al calcolo d'integrali e all'integrazione diequazioni differenziali. Lagrange utilizzò le frazioni continue per la risoluzione delle equazioni numeriche e delle equazioni indeterminate di 1° e 2° grado, e studiò le frazioni continue ...
Leggi Tutto
(XIV, p. 132; App. III, i, p. 564; IV, i, p. 714; v. equazioni differenziali, App. V, ii, p. 131).
Il concetto generale di e. in matematica è trattato nella voce equazioni del vol. XIV dell'Enciclopedia [...] di Plateau. - Come particolare problema trattabile col suo metodo di calcolo delle variazioni per gli integrali doppi, J.L. Lagrange lista completa delle sei famiglie PI, PII, …, PVI delle equazionidi Painlevé:
dove α, β, γ, δ sono parametri ...
Leggi Tutto
lagrangiano
agg. – Che si riferisce o è dovuto al matematico G. L. Lagrange (1736-1813). Nella meccanica analitica, coordinate l., parametri arbitrarî di numero finito (uguale al numero dei gradi di libertà) che determinano completamente la...