La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale
Angus E. Taylor
Le origini dell'analisi funzionale
L'analisi funzionale acquista una precisa identità nel [...] un resoconto completo del suo studio sull'equazione integrale nell'incognita f
[5] f(s)+λ∫bαK(s,t)f(t)dt=g(t)
nella quale le funzioni f e g sono elementi di C[a,b], K(s,t) è una funzione continuadi s e t, e λ è un parametro numerico. Si tratta, una ...
Leggi Tutto
La grande scienza. Calcolo delle variazioni
Gianni Dal Maso
Calcolo delle variazioni
Un problema di grande importanza nella matematica pura e applicata è la ricerca dei valori massimi o minimi di grandezze [...] y=(y1,…,ym) e η=(η1,…,ηm) in ℝm. L'equazionedi Euler diventa allora un sistema di m equazioni differenziali ordinarie nelle m funzioni incognite u1,…,um:
Le condizioni di Legendre e di Jacobi continuano a valere con ovvie modifiche.
C'è un legame ...
Leggi Tutto
Numeri
Umberto Zannier
Quanti? Quanto? Quando? A che distanza? Domande a cui rispondiamo, di solito, con numeri. Di essi facciamo continuo uso, e l’importanza concettuale, oltre che pratica, della nozione [...] di studio della topologia, costruita sul concetto dicontinuità; nel caso della retta, ossia del sistema dei numeri reali, la continuità ugua;le a 6, e abbiamo già ricordato l’equazionedi Eulero eiπ+1=0. Ebbene, con approssimazioni più accurate ...
Leggi Tutto
Equazioni differenziali: problemi non lineari
Jean Mawhin
La modellizzazione di molti problemi fisici porta alla ricerca di soluzioni diequazioni differenziali di secondo ordine, ordinarie o alle derivate [...] i membri dell'equazione [47] per u, integrando su [0,T], e usando la [49] abbiamo
[50] formula,
che, insieme a [49], dà R=R(b,c,T) tale che ∣∣u∣∣〈R. L'esistenza di una soluzione per [46] segue dal teorema dicontinuazionedi Leray-Schauder.
Il ...
Leggi Tutto
onda
ónda [Der. del lat. unda] [LSF] Fenomeno fisico per cui una perturbazione prodotta localmente in un mezzo si propaga a distanza, trasportando lontano energia e informazioni circa le sue caratteristiche [...] che o. termica (v. oltre). ◆ [ELT] O. di terra: il modo di radiopropagazione che si svolge alla superficie dicontinuità suolo-aria, in contrapp. a o. ionosferica: v. radiopropagazione: IV715 e. ◆ [MCC] O. di torsione: v. onda: IV 236 d. ◆ [LSF] O ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Calcolo delle variazioni
Craig Fraser
Mario Miranda
Calcolo delle variazioni
Tra il 1870 e il 1920 si assiste al consolidamento degli argomenti [...] di essere soluzioni; occorre quindi dimostrare l'esistenza delle derivate prime delle 'soluzioni continue' e lavorare poi sulla relazione
valida per ogni funzione lipschitziana ψ nulla su ∂Ω.
Questa strada è stata percorsa nel caso dell'equazione ...
Leggi Tutto
funzione
funzióne [Der. del lat. functio -onis, dal part. pass. functus di fungi "adempiere"] Concetto che s'identifica con quello di applicazione, essendo peraltro preferito se l'insieme di arrivo è [...] il dominio di definizione della funzione. ◆ F. armonica: f. che sia soluzione dell'equazionedi Laplace e soddisfa a qualche proprietà dicontinuità o differenziabilità, da specificare di volta in volta. ◆ F. risolvente: v. algebre di operatori: I 93 ...
Leggi Tutto
evoluzione
evoluzióne [Der. del lat. evolutio -onis, da evolvere (→ evoluta)] [LSF] (a) Con signif. concreto, l'insieme delle posizioni assunte successiv. da un corpo in moto. (b) Con signif. figurato, [...] progressivamente, senza bruschi rivolgimenti o soluzioni dicontinuità. ◆ [BFS] E. biologica: Equazionedi e.: lo stesso che e. del moto di un sistema dinamico: v. equazioni differenziali alle derivate parziali: II 445 a. ◆ [FSN] Equazionedi e. di ...
Leggi Tutto
dipendente
dipendènte [agg. Der. del part. pres. dependens -entis del lat. dependere "derivare da, dipendere", comp. di de- e pendere] [LSF] Di ente che abbia una relazione di dipendenza da un altro: [...] un campo numerico K, più elementi a₁, ..., an di un ampliamento di K che soddisfino un'equazione algebrica f(a₁, ..., an)=0, in cui f condizioni dicontinuità e derivabilità, la condizione necessaria e sufficiente affinché m funzioni di altrettante ...
Leggi Tutto
Biologia
In genetica, tratto di DNA che fa parte di un operone e condiziona la trascrizione dei geni strutturali immediatamente adiacenti (➔ operone).
Filosofia
In filosofia analitica, un’espressione [...] l’eguaglianza ωa=limi (ωai), per a, ai ∈ A e {ai} successione o famiglia diretta di elementi. Queste nozioni di convergenza, limite e continuità consentono poi d’introdurre in modo naturale le altre due operazioni fondamentali dell’analisi matematica ...
Leggi Tutto
numero
nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
ségno s. m. [lat. sĭgnum «segno visibile o sensibile di qualche cosa; insegna militare; immagine scolpita o dipinta; astro», forse affine a secare «tagliare, incidere»]. – 1. a. Qualsiasi fatto, manifestazione, fenomeno da cui si possono trarre...