RELATIVITÀ, Teoria della
Guido CASTELNUOVO
Lucio GIALANELLA
È, in senso largo, ogni teoria fondata sulla ipotesi che qualsiasi esperienza od osservazione (meccanica, fisica, astronomica, ecc.) sia [...] trasformazione (1′), mentre le equazionidi Maxwell dell'elettromagnetismo sono invarianti di fronte alla trasformazione (1); noto come da certe irregolarità nel moto di Sirio, F. W. Bessel avesse concluso l'esistenza di un satellite, Sirio B, che fu ...
Leggi Tutto
Informatica
Fabrizio Luccio
Franco P. Preparata
Carl-Erik Fröberg
Piero Sguazzero
Piero Dell'Orco e Tomaso Poggio
Teoria della computazione di Fabrizio Luccio
SOMMARIO: 1. Origine e motivazioni. [...] calcolo di funzioni, per farne uso in fisica teorica o in altre applicazioni. Per esempio, le funzioni diBessel Jn( Dunque λ deve essere uno zero di una equazionedi grado n che, perlomeno in linea di principio, può essere scritta esplicitamente. È ...
Leggi Tutto
Meccanica e termomeccanica razionali
CClifford A. Truesdell
di Clifford A. Truesdell
SOMMARIO: 1. Concetti e metodi: a) la natura delle scienze razionali; b) la nascita, l'apogeo e il lento declino [...] certe funzioni particolari, quali seni, coseni, esponenziali e funzioni diBessel. Prendendo in considerazione, di solito, solo i casi nei quali le relative equazioni differenziali sono lineari, i matematici hanno dimostrato che tali soluzioni ...
Leggi Tutto
Numeri, teoria dei
LLarry Joel Goldstein
di Larry Joel Goldstein
SOMMARIO: 1. Introduzione: a) argomenti fondamentali; b) la teoria dei numeri nel XVII e XVIII secolo; c) Gauss. □ 2. Teoria algebrica [...] diequazioni diofantee. Alcune delle classi trattate da Baker sono le equazionidi Bachet
y2=x3+k
o, più in generale, le equazioni in formula esatta per p(n) in termini di una serie infinita di funzioni diBessel da H. Rademacher nel 1937. Sulla base ...
Leggi Tutto
L'Ottocento: matematica. Analisi complessa
Jeremy Gray
Analisi complessa
Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] lettera a Bessel con una riflessione sugli integrali nel campo complesso. Dopo aver osservato che il valore di un tale iy)=u(x,y)+iv(x,y) soddisfa le equazionidi Cauchy-Riemann:
Da queste equazioni segue subito che le funzioni u e v sono ...
Leggi Tutto
Materia oscura
Giuseppe Bertin e Tjeerd S. van Albada
SOMMARIO: 1. Introduzione. 2. Note storiche e metodologiche. 3. Le vicinanze del Sole. 4. Galassie a spirale. 5. Galassie ellittiche. 6. Gruppi [...] /h*, e le I e le K indicano le funzioni diBessel; al di là del disco ottico, l'attrazione sarebbe presto ben approssimata nel riconoscere che i tre termini che compaiono nell'equazionedi espansione, che per un universo dominato dalla materia si ...
Leggi Tutto
La grande scienza. Gli acceleratori di particelle
Emilio Picasso
Francesco Ruggiero
Gli acceleratori di particelle
Gli acceleratori di particelle sono strumenti che permettono di studiare le proprietà [...] dalle equazioni seguenti:
dove r e z sono le usuali coordinate cilindriche, E0 l'ampiezza azimutale del campo elettrico sull'asse, v la velocità di fase dell'onda, (μ0/ε0)1/2 l'impedenza del vuoto (377 ohm),
e J0, J1 sono le funzioni diBessel ...
Leggi Tutto
L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea
Jeremy Gray
Dalla geometria proiettiva alla geometria euclidea
La geometria proiettiva
La carriera del matematico francese [...] e allo studio di curve più complicate.
Come Carl Friedrich Gauss (1777-1855) e Friedrich Wilhelm Bessel (1784-1846), XIX sec. furono le superfici quadriche, definite da equazionidi secondo grado, che sono la naturale generalizzazione delle sezioni ...
Leggi Tutto
L'Ottocento: matematica. Il rigore in analisi
Umberto Botta
Il rigore in analisi
L'eredità di Lagrange
All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] equazione z=x+yf(x), di cui un caso particolare (per f(x)=senx) era la celebre 'equazionedi Kepler' di serie non sempre convergente come questa, scriveva all'amico Friedrich Wilhelm Bessel (1784-1846), "può essere presa come una definizione solo ...
Leggi Tutto
L'Eta dei Lumi: matematica. I metodi numerici
Peter Schreiber
I metodi numerici
Il XVII sec. è stato in generale un 'secolo geometrico'. A parte alcune considerazioni di carattere puramente numerico, [...] si aggiunsero presto le funzioni gamma e beta introdotte da Euler nel 1731; le funzioni cilindriche o diBessel, come soluzioni diequazioni differenziali motivate da problemi fisici introdotte da Daniel Bernoulli (1700-1782) nel 1732 e da Euler nel ...
Leggi Tutto
besseliano
agg. – Relativo all’astronomo e matematico ted. F. W. Bessel (1784-1846): anno b. o di Bessel, detto anche anno fittizio (lat. scient. annus fictus), anno solare usato in astronomia, che si fa iniziare dall’istante in cui la longitudine...